
Lecture-20: Bayesian lower bounds

1 Bayesian HCR and CR lower bounds

The drawback of the HCR and CR lower bounds is that they are confined to unbiased estimators. For
the minimax settings, there is no sound reason to restrict to unbiased estimators. In fact, it is often wise
to trade bias with variance in order to achieve a smaller overall risk.

Next we discuss a lower bound, known as the Bayesian Cramér-Rao (BCR) lower bound or the van
Trees inequality, for a Bayesian setting that applies to all estimators. To apply to the minimax setting,
one just needs to choose an appropriate prior. Here we continue the previous line of thinking and derive
it from the data processing argument.

Exercise 1.1 (Chain rule for χ2-divergence). Show that for any pair of measures PX,Y and QX,Y
we have

χ2(PX,Y∥QX,Y) = χ2(PX∥QX) + EX∼QX

[( dPX
dQX

)2
χ2(PY|X∥QY|X)

]
, (1)

regardless of the versions of conditional distributions PY|X and QY|X one chooses.

Exercise 1.2 (Data processing inequality for f -divergence). For any Markov chain X → Y → Z,
a pair of measures PX,Y,Z and QX,Y,Z with common Markov kernel PZ|Y = QZ|Y, a convex map
f : (0,∞)→ R+, and arbitrary function g : X× Z→ R, we have

D f (PX,Y∥QX,Y)⩾ D f (PX,Z∥QX,Z)⩾ D f (Pg(X,Z)∥Qg(X,Z)). (2)

Definition 1.3 (Push forward operator). For any δ > 0, we define a push forward operator Tδ : M(R)→
M(R) that applies δ shift to measurable sets. Specifically, Tδµ ∈M(X) for any measure µ ∈M(X), and
is defined as (Tδµ)(−∞, x]≜ µ(−∞, x] for any x ∈ R.

Theorem 1.4 (Bayesian HCR lower bound). Consider statistical decision theory simple setting for Θ ≜ R

with statistical model P(Θ) such that for any Pθ ∈ P(Θ) there exists a relative density pθ ∈M(X) with respect
to a dominant measure µ ∈ M(X). Further, we assume a prior π ∈ M(Θ) that admits a relative density with
respect to Lebesgue measure, and two distributions P, Q ∈ M(Θ × X) such that dQθ,X ≜ dπ(θ)dPθ(X) and
dPθ,X ≜ d(Tδπ)(θ)dPθ−δ(X). Then, the Bayes risk satisfies the Bayesian HCR lower bound

R∗
π ≜ inf

θ̂
Eπ(θ̂ − θ)2 ⩾ sup

δ ̸=0

δ2

χ2(Pθ,X∥Qθ,X)
.

Proof. We observe that for measures P, Q, their respective relative densities p,q exist with respect to
product measure of Lebesgue measure on Θ and dominant measure µ ∈M(X) such that for all (θ, x),

q(θ, x)≜ π′(θ)pθ(x), p(θ, x)≜ π′(θ − δ)pθ(x).

Consider an estimator θ̂(X,U) for observation X and external randomness U, then we observe that
θ → X → θ̂ is a Markov chain, and for any joint distribution (θ, X), the Markov kernel Pθ|X is common.
Applying data processing inequality from Exercise 1.2 and variational representation of χ2-divergence
from Exercise 1.1, we obtain

χ2(Pθ,X∥Qθ,X)⩾ χ2(Pθ,θ̂∥Qθ,θ̂)⩾ χ2(Pθ−θ̂∥Qθ−θ̂)⩾
(EP[θ − θ̂]− EQ[θ − θ̂])2

VarQ(θ̂ − θ)
.
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We observe that QX(x) =
∫

Θ dπ(θ)Pθ(x) and PX(x) =
∫

Θ dπ(θ − δ)Pθ−δ(x). By substitution of variables,
we observe that PX = QX and thus EP θ̂ = EQ θ̂. On the other hand, EPθ = EQθ + δ. Furthermore,
Eπ(θ̂ − θ)2 ⩾ VarQ(θ̂ − θ) with equality iff Eπ θ̂ = Eπθ. Since this applies to any estimator, the result
follows.

Definition 1.5 (Fisher information). For any measure π ∈ M(R) such that π(x) ≜ π(−∞, x] for all
x ∈ R, and the relative density π′(x) ≜ dπ(x)

dx with respect to Lebesgue measure exists, we define its
Fisher information as

J(π′)≜ EX∼π

( d
dx

lnπ′(X)
)2

=
∫

R
dx

(π′′(x))2

π′(x)
.

Corollary 1.6 (Bayesian CR lower bound). Under the conditions of Theorem 1.4 and suitable regularity
conditions for the local expansion of χ2-divergence such that χ2(Tδπ∥π) = (J(π)+ o(1))δ2 and χ2(Pθ−δ∥Pθ) =
(JF(θ) + o(1))δ2, the Bayes risk satisfies the Bayesian CR lower bound

R∗
π ⩾

1
J(π) + Eθ∼π JF(θ)

.

Proof. We can lower bound the supremum in Theorem 1.4 by evaluating the small-δ limit. Recognizing
that Pθ = Tδπ, Qθ = π and PX|θ = Pθ−δ, QX|θ = Pθ , applying the chain rule for the χ2-divergence in
Exercise 1.1, and applying the local expansion of χ2-divergence we obtain the result.

Example 1.7 (GLM). Consider an i.i.d. observation sample X : Ω → Xm under GLM with common
Gaussian distribution N (θ,1) and consider the prior θ ∼ π ≜N (0, s). To apply the Bayesian HCR
bound, we note that X̄ ≜ 1

m ∑m
i=1 Xi is a sufficient statistic for X, and apply the chain rule to obtain

χ2(Pθ,X∥Qθ,X) = χ2(Pθ,X̄∥Qθ,X̄) = χ2(Pθ∥Qθ) + EQ

[
χ2(PX̄|θ∥QX̄|θ)

( dPθ

dQθ

)2
]

.

From the definition of P and Q, we obtain that Qθ = N (0, s), QX̄|θ = N (θ, 1
m ), and Pθ =

N (δ, s), PX̄|θ =N (θ − δ, 1
m ). Using the χ2-divergence for Gaussians, we get

χ2(Pθ,X∥Qθ,X) = e
δ2
s − 1 + e

δ2
s (emδ2 − 1) = eδ2(m+ 1

s ) − 1.

We can write the Bayesian HCR lower bound as

R∗
π ⩾ sup

δ ̸=0

δ2

eδ2(m+ 1
s ) − 1

⩾ lim
δ→0

δ2

eδ2(m+ 1
s ) − 1

=
s

sm + 1
.

In view of the Bayes risk found, we see that in this case the Bayesian HCR and Bayesian Cramér-Rao
lower bounds are exact.

2 Bayesian CR lower bounds and extensions

We give the rigorous statement of the Bayesian Cramér-Rao lower bound and discuss its extensions
and consequences. For the proof, we take a more direct approach as opposed to the data-processing
argument, based on asymptotic expansion of the χ2-divergence.

Definition 2.1 (Bayesian score). Under the Bayesian setting, let π be a prior density on Θ and Pθ ∈
M(X) be the observation distribution such that Pθ ≪ µ for some dominating measure µ ∈M(X) such
that pθ ≜

dPθ
dµ . We define Bayesian score V : Θ ×X→ R defined as V(θ, x)≜∇θ ln(pθ(x)π(θ)) for (θ, x).

Theorem 2.2 (BCR lower bound). Consider a statistical decision theory simple setting for Θ ≜ R under the
following conditions.
(a) Let π be a differentiable prior density with compact support [θ0,θ1], vanishing on the boundary, and finite

Fisher information J(π).
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(b) Let Pθ ≪ µ for some dominating measure µ ∈ M(X) with relative density pθ ≜
dPθ
dµ differentiable in θ for

µ-almost every x.
(c) Let

∫
X

dµ(x)∇θ pθ(x) = 0 for π-almost every θ.
Then the Bayes quadratic risk R∗

π ≜ infθ̂ E(θ − θ̂)2 satisfies Bayesian CR lower bound

R∗
π ⩾

1
Eθ∼π JF(θ) + J(π)

.

Proof. Since Bayes estimator is always deterministic, without loss of any generality, we assume that the
estimator θ̂ ≜ θ̂(X) is deterministic. For each x, integration by parts yields∫ θ1

θ0

dθ(θ̂(x)− θ)∇θ(pθ(x)π(θ)) =
∫ θ1

θ0

pθ(x)π(θ)dθ.

From the definition of Bayesian score, recalling the fact that integrating both sides over dµ(x), we obtain
the following expectation over the joint distribution of (θ, X),

E[(θ̂ − θ)V(θ, X)] =
∫

Θ×X
dµ(x)dθ(θ̂(x)− θ)pθ(x)π(θ)∇θ ln(pθ(x)π(θ)) =

∫
Θ×X

dµ(x)dθpθ(x)π(θ) = 1.

Applying Cauchy-Schwarz, we have E(θ̂ − θ)2EV(θ, X)2 ⩾ 1. We further observe that

EV(θ, X)2 = E(∇θ ln pθ(X))2 + E(∇θ lnπ(θ))2 + 2E[∇θ ln pθ(X)∇θ lnπ(θ)].

The proof is completed by noting that E[∇θ ln pθ(X)∇θ lnπ(θ)] =
∫

Θ×X
dµ(x)∇θ pθ(x)∇θπ(θ) = 0, since∫

X
dµ(x)∇θ pθ(x) = 0 for π-almost every θ.

Theorem 2.3 (Multivariate BCR). Consider a statistical decision theory simple setting for Θ ≜ Rd under the
following conditions.
(a) Let π be a product prior density defined as π(θ) ≜ ∏d

i=1 πi(θi) where for each i]in[d], the density πi is
differential with compact support [θ0,i,θ1,i], vanishing on the boundary, and has finite Fisher information
J(πi).

(b) Let Pθ ≪ µ for some dominating measure µ ∈ M(X) with relative density pθ ≜
dPθ
dµ differentiable in θ for

µ-almost every x.
(c) Let

∫
X

dµ(x)∇θ pθ(x) = 0 for π-almost every θ.
We define the Fisher information matrices by

JF(θ)≜ Eθ [∇θ ln pθ(X)∇θ ln pθ(X)⊤], J(π)≜ diag(J(π1), . . . , J(πd)).

Then, the quadratic Bayes risk is lower bounded in terms of two Fisher information matrices as

R∗
π ≜ inf

θ̂
Eπ

∥∥θ̂ − θ
∥∥2

⩾ tr(Eθ∼π JF(θ) + J(π))−1.

Proof. From conditions, we observe that π is defined over the box ∏d
i=1[θ0,i,θ1,i]. We fix a deterministic

estimator θ̂ ≜ (θ̂1(X), . . . , θ̂d(X)) and a non-zero u ∈ Rd. Let ek be the unit vector in kth dimension. For
each i,k ∈ [d], integration by parts yields∫ θ1,i

θ0,i

(θ̂k(x)− θk)∇θi (pθ(x)π(θ))dθi = ⟨ei, ek⟩
∫ θ1,i

θ0,i

dθi pθ(x)π(θ).

Integrating both sides over ∏j ̸=i dθj and dµ(x), multiplying by ui, and summing over i, we obtain

E(θ̂k(X)− θk) ⟨u,∇ ln pθ(X)π(θ)⟩ = ⟨u, ek⟩ .

Defining Σ≜E∇ ln(pθ(X)π(θ))(∇ ln(pθ(X)π(θ)))⊤ =Eθ∼π JF(θ)+ J(π), and applying Cauchy-Schwarz
and optimizing over u yields

E(θ̂k(X)− θk)
2 ⩾ sup

u ̸=0

⟨u, ek⟩
u⊤Σu

= Σ−1
kk .

Summing over k completes the proof.

3



Remark 1. The multivariate Bayesian CR lower bound depends on the choice of prior density.

• The above versions of the BCR bound assume a prior density that vanishes at the boundary. If we
choose a uniform prior, the same derivation leads to a similar lower bound known as the Chernoff-
Rubin-Stein inequality, which also suffices for proving the optimal minimax lower bound.

• For the purpose of the lower bound, it is advantageous to choose a prior density with the mini-
mum Fisher information. The optimal density with a compact support is known to be a squared
cosine density. That is, the following minimum is attained by g(u) = cos2 πu

2 ,

min
g on [−1,1]

J(g) = π2.

• Suppose the goal is to estimate a smooth functional T(θ) of the unknown parameter θ, where
T : Rd → Rs is differentiable with Jacobian matrix ∇T(θ) ∈ Rs×d defined as [∇T(θ)]ij ≜

∂Ti(θ)
∂θj

for

all i, j ∈ [s]× [d]. Then under the same condition of Theorem 2.3, we have the following Bayesian
Cramér-Rao lower bound for functional estimation

inf
T̂

Eπ

∥∥T̂(X)− T(θ)
∥∥2

2 ⩾ trEθ∼π∇T(θ)(Eθ∼π JF(θ) + J(π))−1Eθ∼π∇T(θ)⊤.

Theorem 2.4. Assume that the map θ 7→ JF(θ) is continuous. Denote the minimax squared error for i.i.d. sample
X : Ω → Xm under common distribution Pθ ∈M(X) as R∗

m ≜ infθ̂ supθ∈Θ Eθ

∥∥θ̂ − θ
∥∥2. Then, as m → ∞, we

have

R∗
m ⩾

1 + o(1)
m

sup
θ∈Θ

tr J−1
F (θ).

Proof. Fix θ ∈ Θ ⊆ Rd. Then for all sufficiently small δ, we have B∞(θ,δ) ≜ θ + [−δ,δ]d ⊂ Θ. Consider

marginal prior densities πi(θi) ≜
1
δ g

(
θ−θi

δ

)
, where g is the squared cosine density. Then the product

distribution π ≜ ∏d
i=1 πi satisfies the assumption of Theorem 2.3. By the scaling rule of Fisher informa-

tion, we obtain J(πi) =
1
δ2 J(g) = π2

δ2 . Thus J(π) = π2

δ2 Id. It is known that the continuity of θ 7→ JF(θ)

implies
∫
X

dµ(x)∇θ pθ(x) = 0. Therefore, we can apply Theorem 2.3 to get the BCR lower bound. Fur-
ther, lower bounding the minimax risk by the Bayes risk and applying the additivity property of Fisher
information, we get

R∗
m ⩾

1
m

tr
(

Eθ∼π JF(θ) +
π2

mδ2 Id

)−1
.

Finally, choosing δ = m−1/4 and applying the continuity of JF(θ) in θ, we get the result.
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