
Lecture-21: Mutual Information Method

1 Introduction

In this chapter we describe a strategy for proving statistical lower bound we call the mutual informa-
tion method (MIM), which entails comparing the amount of information data provides with the mini-
mum amount of information needed to achieve a certain estimation accuracy. The main information-
theoretical ingredient is the data-processing inequality, this time for mutual information as opposed to
f -divergences.

Here is the main idea of the MIM. Fix some prior π ∈M(Θ) and we aim to lower bound the Bayes
risk R∗

π of estimating θ ∼ π on the basis of X with respect to some loss function L : Θ × Θ̂ → R. Let θ̂ be
an estimator such that E[L(θ, θ̂)] ⩽ D. Then we have the Markov chain θ → X → θ̂. Applying the data
processing inequality for mutual information, we have

inf
Pθ̂|θ :EL(θ,θ̂)⩽D

I(θ; θ̂)⩽ I(θ; θ̂)⩽ I(θ; X). (1)

Remark 1. We observe the following for the above inequality.
(a) The leftmost quantity can be interpreted as the minimum amount of information required to achieve

a given estimation accuracy. This is precisely the rate-distortion function ϕ(D) ≡ ϕθ(D).
(b) The rightmost quantity can be interpreted as the amount of information provided by the data about

the latent parameter. Sometimes it suffices to further upper-bound it by the capacity of the channel
PX|θ by maximizing over all priors. That is,

I(θ; X)⩽ sup
π∈P(Θ)

I(θ; X)≜ C.

Therefore, we arrive at the following lower bound on the Bayes and hence the minimax risks

R∗
π ⩾ ϕ−1(I(θ; X))⩾ ϕ−1(C).

The reasoning of the mutual information method is reminiscent of the converse proof for joint- source
channel coding. As such, the argument here retains the flavor of “source- channel separation”, in that
the lower bound in (1) depends only on the prior (source) and the loss function, while the capacity
upper bound (b) depends only on the statistical model (channel).

We next discuss a sequence of examples to illustrate the MIM and its execution:
(a) Denoising a vector in Gaussian noise, where we will compute the exact minimax risk;
(b) Denoising a sparse vector, where we determine the sharp minimax rate;
(c) Community detection, where the goal is to recover a dense subgraph planted in a bigger Erdös-

Rényi graph.
Subsequently, we will discuss three popular approaches for, namely, Le Cam’s method, Assouad’s lemma,
and Fano’s method. All three follow from the mutual information method, corresponding to different
choice of prior π ∈M(θ), namely, the uniform distribution over a two-point set {θ0,θ1}, the hypercube
{0,1}d, and a packing. While these methods are highly useful in determining the minimax rate for many
problems, they are often loose with constant factors compared to the MIM. We discuss the problem of
how and when is non-trivial estimation achievable by applying the MIM. For this purpose, none of the
three methods works.

1.1 GLM revisited and the Shannon lower bound

Consider the d-dimensional GLM, where we observe an i.i.d. sample X : Ω → Rm with common distri-
bution N (θ, Id) and parameter θ ∈ Θ. Denote by R∗(Θ) the minimax risk with respect to the quadratic
loss L : (θ, θ̂) 7→

∥∥θ̂ − θ
∥∥2

2. First, let us consider the unconstrained model where Θ ≜ Rd. Estimating us-
ing the sample mean X̄ ≜ 1

m ∑m
i=1 Xi ∼ N(θ, 1

m Id), we achieve the upper bound R∗(Rd)⩽ d
m . This turns
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out to be the exact minimax risk, as seen by computing the Bayes risk for Gaussian priors. Next we
apply the mutual information method to obtain the same matching lower bound without evaluating
the Bayes risk.

Again, let us consider θ ∼ N (0, sId) for some s > 0. We know from the Gaussian rate-distortion
function (Theorem 26.2) that

ϕ(D)≜ inf
Pθ̂|θ :E∥θ−θ̂∥2

2⩽D
I(θ; θ̂) =

d
2

ln
sd
D
1{D<sd}.

A Rate-distortion theory

Lemma A.1. Let P, Q ∈M(Y) be two measures on space Y, then the map (P, Q) 7→ D(P∥Q) is convex.

Proof. Let X ≜ {0,1} and let PX = QX ∈ M(X) be a Bernoulli distribution with mean λ ∈ [0,1]. Let
P0, P1, Q0, Q1 ∈M(Y) and define Markov kernels

PY|X=0 ≜ P0, PY|X=1 ≜ P1, QY|X=0 ≜ Q0, QY|X=1 ≜ Q1.

We can write the divergence of two joint distributions PX,Y and QX,Y in terms of conditional divergence,
and as

D(PX,Y∥QX,Y) = D(PY|X∥QY|X | PX) = λ̄D(P0∥Q0) + λD(P1∥Q1).

We get the result by applying the data processing inequality D(PX,Y∥QX,Y) ⩾ D(PY∥QY) for diver-
gences.

Remark 2. The proof shows that for an arbitrary measure of similarity D(P∥Q), the convexity of (P, Q) 7→
D(P∥Q) is equivalent to conditioning increases divergence property of D. Convexity can also be under-
stood as mixing decreases divergence.

Definition A.2. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the
mutual information is defined as

I(X;Y)≜ D(PX,Y | PX ⊗ PY).

Lemma A.3. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the mutual
information I(X;Y) = D(PY|X∥PY | PX).

Proof. From the definition of mutual information and tower property of conditional expectation, we
write

I(X;Y) = EPX PY|X ln
PY|X
PY

= EPX D(PY|X∥PY) = D(PY|X∥PY | PX).

Theorem A.4 (Data processing inequality). If X → Y → Z is a Markov chain, then I(X; Z)⩽ I(X;Y) with
equality iff X → Z → Y.

Proof. Since X → Y → Z is a Markov chain. Hence, X and Z are conditionally independent given Y, and
I(X; Z | Y) = 0. Applying Kolmogorov identity to I(Y, Z; X), we get

I(Y, Z; X) = I(X;Y) + I(X; Z | Y) = I(X; Z) + I(X;Y | Z).

The result follows from the observation that I(X; Z | Y) = 0 and I(X;Y | Z)⩾ 0.

Lemma A.5. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the mutual
information I(X;Y) is convex in PY|X .

Definition A.6 (Rate distortion). Consider parameter space Θ, prediction space Θ′, and loss function
L : Θ × Θ′ → R. We define the rate distortion function ϕθ : R → R for each D ∈ R as

ϕθ(D)≜ inf
Pθ̂|θ :EL(θ,θ̂)⩽D

I(θ; θ̂). (2)
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Theorem A.7 (General converse). Suppose X → W → X̂, where W ∈ [M] and EL(X, X̂)⩽ D. Then

ln M ⩾ ϕX(D)≜ inf
PY|X :EL(X,Y)⩽D

I(X;Y).

Proof. Since PX̂|X is a feasible solution by hypothesis, we get ln M ⩾ H(W) ⩾ I(X;W) ⩾ I(X; X̂) ⩾
ϕX(D).

Definition A.8. We define maximum distortion as Dmax ≜ infθ̂ Eθ∼π L(θ, θ̂) for a deterministic θ̂.

Remark 3. By definition, Dmax is the distortion attainable without any information. Indeed, if Dmax =
Ed(X, θ̂) for some fixed θ̂, then this θ̂ is the “default” reconstruction of θ, i.e., the best estimate when we
have no information about θ. Therefore D ⩾ Dmax can be achieved for free. This is the reason for the
notation Dmax despite that it is defined as an infimum.

Theorem A.9 (Properties). The following properties are true for rate distortion function ϕθ : R → R.
(a) The map ϕθ is convex and non-increasing.
(b) ϕθ(D) = 0 for all D > Dmax.

Proof. Recall that I(θ; θ̂) = Eθ∼π D(Pθ,θ̂∥Pθ ⊗ Pθ̂) = D(Pθ̂|θ∥Pθ̂ | π) = Eθ∼πEPθ̂|θ
ln

Pθ̂|θ
Pθ̂

(a) Since I(θ; θ̂) = D(Pθ̂|θ∥Pθ̂ | π) and Pθ̂ is linear in Pθ̂|θ , we get that Pθ̂|θ 7→ D(Pθ̂|θ∥Pθ̂) is convex for
each realization θ. Infimum of convex functions is convex, and the result follows.

(b) For any D > Dmax we can set θ̂ deterministically. Thus I(θ; θ̂) = 0.

Theorem A.10 (Joint vs marginal mutual information). Consider a random vector (X,Y) : Ω → (X×Y)m.
(a) If the channel is memoryless, i.e., PY|X = ∏m

i=1 PYi |Xi
, then I(X;Y)⩽ ∑m

i=1 I(Xi;Yi), with equality iff PY =

∏m
i=1 PYi . Consequently, the (unconstrained) capacity is additive for memoryless channels, i.e.

max
PX

I(X;Y) =
m

∑
i=1

max
PXi

I(Xi;Yi).

(b) If the source is memoryless, i.e., PX = ∏m
i=1 PXi , then I(X;Y) ⩾ ∑m

i=1 I(Xi;Y) with equality iff PX|Y =

PY ∏m
i=1 PXi |Y-almost surely. Consequently,

min
PY|X

I(X;Y) =
m

∑
i=1

min
PYi |Xi

I(Xi;Yi).

Proof. We utilize the definition of mutual information.
(a) From the definition of mutual information, we write

I(X;Y)−
m

∑
i=1

I(Xi,Yi) =EPX EPY|X ln
PY|X
PY

−
m

∑
i=1

EPXi
EPYi |Xi

ln
PYi |Xi

PYi

=EPX EPY|X

[
ln

PY|X
PY

− ln
∏m

i=1 PYi |Xi

∏m
i=1 PYi

]
.

We can rearrange the terms and observe that ln PY
∏m

i=1 PYi
only depends on PY, to get

I(X;Y)−
m

∑
i=1

I(Xi,Yi) = D(PY|X∥
m

∏
i=1

PYi |Xi
| PX)− D(PY∥

m

∏
i=1

PYi ).

When channel is memoryless, D(PY|X∥∏m
i=1 PYi |Xi

| PX) = 0, and we get the result.
(b) Similarly, switching the role of X and Y, we can write

I(X;Y)−
m

∑
i=1

I(Xi,Y) =EPY EPX|Y

[
ln

PX|Y
PX

− ln
∏m

i=1 PXi |Y
∏m

i=1 PXi

]
= D(PX|Y∥

m

∏
i=1

PXi |Y | PY)−D(PX∥
m

∏
i=1

PXi ).

When source is memoryless, D(PX∥∏m
i=1 PXi ) = 0, and we get the result.

Remark 4. We observe the following.
(a) For a product channel, the input maximizing the mutual information is a product distribution.
(b) For a product source, the channel minimizing the mutual information is a product channel.
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Theorem A.11 (Single-letterization). For stationary memoryless source S : Ω → Sm with common distribu-
tion P ∈M(S) and separable loss L such that L(S, Ŝ) = 1

m ∑m
i=1 Li(Si, Ŝi), then ϕS(D) = mϕS1(D) for every m.

Thus,

R(I)(D)≜ limsup
m→∞

1
m

ϕS(D) = ϕS1(D).

Proof. Consider an estimate Ŝ such that PŜ|S ≜ ∏m
i=1 PŜi |Si

where ELi(Si, Ŝi) ⩽ D for all i ∈ [m]. Then Ŝ
is a feasible estimate with EL(S, Ŝ) ⩽ D. Further, for this definition of estimate Ŝ is memoryless and
stationary, since S is memoryless and stationary. It follows that I(S; Ŝ) = ∑m

i=1 I(Si; Ŝi). Recall that the
rate distortion for m-sized S is defined as

ϕS(D)≜ inf
PŜ|S :EL(S,Ŝ)⩽D

I(S; Ŝ)⩽ inf
PŜ|S=P⊗m

Ŝ1 |S1
:ELi(S,Ŝ)⩽D,i∈[m]

m

∑
i=1

I(Si; Ŝi)⩽
m

∑
i=1

inf
PŜi |Si

:ELi(S,Ŝ)⩽D
I(Si; Ŝi) =mϕS1(D).

Diving by m on both sides and taking limit m → ∞, we obtain R(I)(D)⩽ ϕS1(D).
For the converse, for any PŜ|S satisfying the constraint EL(S, Ŝ)⩽ D, we have

I(S; Ŝ)⩾
m

∑
i=1

I(Si; Ŝi)⩾
m

∑
i=1

ϕS1(ELi(Si; Ŝi))⩾ mϕS1

( 1
m

m

∑
i=1

ELi(Si; Ŝi)
)
⩾ mϕS(D).

In the first step we used the crucial super-additivity property of mutual information.

Theorem A.12 (Rate distortion for Gaussian sources). Let S ∼ N (0,σ2 Id) and d(s, ŝ) ≜ ∥s − ŝ∥2
2 for

s, ŝ ∈ Rd, then rate distortion function R(D)≜ infPŜ|S :Ed(S,Ŝ)⩽D I(S; Ŝ) = d
2 ln+ dσ2

D .

Proof. We first show the result for d = 1. Since Dmax = σ2, we can assume D < σ2 for otherwise there is
nothing to show.
(a) Achievability. Choose S = Ŝ + Z, where Ŝ ∼ N (0,σ2 − D) and independent of Z ∼ N (0, D). In

other words, the backward channel PS|Ŝ is AWGN with noise power D, and the forward channel is

PŜ|S =N ( σ2−D
σ2 S, σ2−D

σ2 D). Then R(D)⩽ I(S; Ŝ) = 1
2 ln σ2

D .

(b) Converse. Let S ∼ N (0,σ2) and PŜ|S be any conditional distribution such that EP(S − Ŝ)2 ⩽ D.
Denote the forward channel in the above achievability by P∗

Ŝ|S. Then, we have

I(S; Ŝ) = EP ln
PS|Ŝ
P∗

S|Ŝ
+ EP ln

P∗
S|Ŝ
PS

= D(PS|Ŝ∥P∗
S|Ŝ | PŜ) + EP ln

P∗
S|Ŝ
PS

.

From the non-negativity of KL divergence and definition of P∗
Ŝ|S, we write

I(S; Ŝ)⩾ EP ln
P∗

S|Ŝ
PS

=
1
2

ln
σ2

D
+

1
2

EP

[S2

σ2 − (S − Ŝ)2

D

]
⩾

1
2

ln
σ2

D
.

Finally, for the vector case follows from the scalar case and the same single-letterization argument in
Theorem 24.8 using the convexity of the rate-distortion function in Theorem 24.4(a).
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