
Lecture-23: Reduction to hypothesis testing

1 Introduction

We study three commonly used techniques for proving minimax lower bounds, (a) Le Cam’s method,
(b) Assouad’s lemma, and (c) Fano’s method. Compared to the results for large-sample asymptotics
in smooth parametric models, the approach here is more generic, less tied to mean-squared error, and
applicable in nonasymptotic settings such as nonparametric or high-dimensional problems.

The common rationale of all three methods is reducing statistical estimation to hypothesis testing.
Specifically, we lower bound the minimax risk R∗(Θ) for the parameter space Θ in the following steps.
Step 1. We notice that R∗(Θ)⩾ R∗(Θ′) for any subcollection Θ′ ⊂ Θ.
Step 2. From mutual information method, we have for any choice of prior π,

R∗
π ⩾ ϕ−1(I(θ; X))⩾ ϕ−1(C).

Step 3. Choose a suitable prior π ∈M(Θ′), to obtain

R∗(Θ)⩾ R∗(Θ′)⩾ R∗
π ⩾ ϕ−1(C).

Remark 1. Le Cam, Assouad, and Fano’s methods amount to choosing Θ′ to be a two-point set, a hy-
percube, or a packing, respectively. In particular, Le Cam’s method reduces the estimation problem
to binary hypothesis testing. This method is perhaps the easiest to evaluate; however, the disadvan-
tage is that it is frequently loose in estimating high-dimensional parameters. To capture the correct
dependency on the dimension, both Assouad’s and Fano’s method rely on reduction to testing multiple
hypotheses.
Remark 2. All three methods in fact follow from the common principle of the mutual information
method (MIM), corresponding to different choice of priors. The limitation of these methods, compared
to the MIM, is that, due to the looseness in constant factors, they are ineffective for certain problems
such as estimation better than chance discussed.

1.1 Le Cam’s two-point method

Definition 1.1. Let α > 0 and a parameter space Θ with any three parameters θ0,θ1,θ ∈ Θ. We call
L : Θ × Θ → R+ an α-metric on Θ, if it satisfies
(a) symmetry, i.e. L(θ0,θ1) = L(θ2,θ1),
(b) positivity, i.e. L(θ0,θ1)⩾ 0 with equality iff θ0 = θ1, and
(c) α-triangle inequality, i.e. L(θ0,θ1)⩽ α(L(θ0,θ) + L(θ1,θ)).

Theorem 1.2. Consider a simple statistical decision theory setting with Θ = Θ̂, and loss function L : Θ × Θ →
R+ that is an α-metric on parameter space Θ. Then, the minimax risk R∗(Θ)≜ infθ̂ supθ∈Θ Eθ L(θ, θ̂) satisfies

R∗(Θ)⩾ sup
θ0,θ1∈Θ

L(θ0,θ1)

2α
(1 − TV(Pθ0 , Pθ1)). (1)

Proof. Fix parameters θ0,θ1 ∈ Θ, a loss function L as defined in theorem hypothesis, and estimator θ̂ :

X→ Θ. We define p(X)≜ L(θ1,θ̂(X))

L(θ0,θ̂(X))+L(θ1,θ̂(X))
, and the following randomized test θ̃ : X× [0,1]→{θ0,θ1}

for any independent uniform random variable U : Ω → [0,1], such that

θ̃(X,U)≜ θ01{U⩽p} + θ11{U>p}.

We observe that the probability of errors are

EX∼Pθ0
1{θ̃=θ1} = EX∼Pθ0

(1 − p(X)), EX∼Pθ1
1{θ̃=θ0} = EX∼Pθ1

p(X).
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Using α-triangle inequality for loss function L, we observe that p̄(X)⩽ α
L(θ0,θ̂(X))

L(θ0,θ1)
and p(X)⩽ α

L(θ1,θ̂(X))
L(θ0,θ1)

.
Therefore, it follows for i ∈ {0,1}

EX∼Pθi
[L(θi, θ̃(X,U))] = L(θ0,θ1)EX∼Pθ0

1{θ̃=θ1} ⩽ αEX∼Pθi
[L(θi, θ̂(X))].

We assume θ ∼ π taking the prior π ≜ 1
2 (δθ0 + δθ1). We can write the expectation of loss to obtain the

following lower bound on the Bayes risk,

Rπ(Θ)⩾ Eθ∼πEX∼Pθ
[L(θ, θ̂(X))] =

1

∑
i=0

πθi EX∼Pθi
L(θi, θ̂(X))⩾

1
α

1

∑
i=0

πθi EX∼Pθi
L(θi, θ̃(X,U)).

Using the symmetry of loss function L and from them minimum average probability of error in binary
hypothesis testing in Theorem A.2, we obtain

Rπ(Θ)⩾
L(θ0,θ1)

α

1

∑
i=0

πθi PX∼Pθi
1{θi ̸=θ̃(X,U)} =

L(θ0,θ1)

α
P
{

θ̃ ̸= θ
}
⩾

L(θ0,θ1)

2α
(1 − TV(Pθ0 , Pθ1)).

Example 1.3 (Binary hypothesis testing). Consider a binary hypothesis testing problem with Θ ≜
{θ0,θ1} and the Hamming loss L(θ, θ̂) = 1{θ ̸=θ̂}, where θ, θ̂ ∈ Θ and α = 1. Let Pe be the probability
of error as defined in (2). Then the left side of (1) is the minimax probability of error, and the right
side of (1) is the optimal average probability of error since Pe(θ̂) ⩾ 1 − TV(P, Q) for any estimator
θ̂ : X× [0,1]→ Θ from (3).

Remark 3. Binary hypothesis testing is an example where the bound (1) is tight up to constants. In fact,
these two quantities can coincide, for example for Gaussian location model.

Remark 4. Another special case of interest is the quadratic loss L(θ, θ̂) =
∥∥θ − θ̂

∥∥2
, where θ, θ̂ ∈ Rd, which

satisfies the α-triangle inequality with α = 2. In this case, the leading constant 1
4 in (1) makes sense,

because in the extreme case of TV = 0 where Pθ0 and Pθ1 cannot be distinguished, the best estimate is
simply θ0+θ1

2 .

Remark 5. The inequality (1) can also be deduced based on properties of f -divergences and their joint
range. We consider the prior π = 1

2 (δθ0 + δθ1). Then the Bayes estimator is the posterior mean and given

by
θ0dPθ0

+θ1dPθ1
dP0+dP1

and the Bayes risk is given by

R∗
π =

1
2
∥θ0 − θ1∥2

∫
X

dPθ0 dPθ1

dPθ0 + dPθ1

=
1
4
∥θ0 − θ1∥2 (1 − LC(Pθ0 , Pθ1))⩾

1
4
∥θ0 − θ1∥2 (1 − TV(Pθ0 , Pθ1)),

where LC(Pθ0 , Pθ1) =
∫
X

(dPθ0
−dPθ1

)2

dPθ0
+dPθ1

is the Le Cam divergence.

Remark 6. Let P, Q ≪ µ for measures P, Q,µ ∈M(X), so that we can define relative densities p ≜ dP
dµ and

q ≜ dQ
dµ . Then, we observe that |p(x)− q(x)|⩽ (p(x)−q(x))2

p(x)+q(x) since |p(x)−q(x)|
p(x)+q(x) ⩽ 1. It follows that LC ⩽ TV.

A Total variation distance

Definition A.1 (Binary hypothesis testing). The binary hypothesis testing problem is formulated as fol-
lows. One is given an observation X : Ω → X with two possible hypotheses. The null-hypothesis H0
implies that X ∼ P, and the alternative hypothesis H1 implies that X ∼ Q. The goal is to decide, on the
basis of observation X alone, which of the two hypotheses holds. In other words, we want to find a pos-
sibly randomized decision function ϕ : X× [0,1]→{0,1} such that the probability of error is minimized,
where probability of error is defined as the sum of two types of probabilities of error

Pe(ϕ)≜ P{ϕ(X,U) = 1}+ Q{ϕ(X,U) = 0} . (2)
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Theorem A.2 (Minimum probability of error). For total variation distance TV : M(X)×M(X) → R+

and family of real-valued functions G≜
{

f ∈ RX : ∥ f ∥∞ ⩽ 1
}

, the following representations are true for P, Q ∈
M(X).
(a) sup-representation. TV(P, Q) = supX−1(E)∈F P{X ∈ E}−Q{X ∈ E}= 1

2 sup f∈G EP f (X)−EQ f (X).
In particular, the minimal total error probability in (2) is given by

min
{

P{ϕ(X,U) = 1}+ Q{ϕ(X,U) = 0} : ϕ ∈ {0,1}X×[0,1]
}
= 1 − TV(P, Q). (3)

(b) inf-representation. If the diagonal {X = Y} ∈ F is measurable, then

TV(P, Q) = min{PX,Y {X ̸= Y} : PX,Y ∈M(X×X), PX = P, PY = Q} , (4)

where minimization is over joint distributions PX,Y with the property PX = P and PY = Q, which are called
couplings of P and Q.

Proof. Let P, Q ≪ µ for some dominating measure µ ∈M(X) and denote the conditional densities p ≜
dP
dµ ,q ≜ dQ

dµ . By definition, TV(P, Q) = 1
2

∫
X
|p(x)− q(x)|dµ(x).

(a) For any f ∈ G, we have
∫
X

f (x)(p(x)− q(x))dµ ⩽
∫
X
|p(x)− q(x)|dµ = 2TV(P, Q). This implies that

TV(P, Q)⩾ 1
2 (EP f (X)− EQ f (X)) for all f ∈ G. For any E ∈ σ(X), we can define f ≜ 21E − 1 ∈ G to

obtain 1
2 (EP f (X)− EQ f (X)) = P{X ∈ E} − Q{X ∈ E}. It follows that

TV(P, Q)⩾ sup
f∈G

1
2
(EP f (X)− EQ f (X))⩾ sup

X−1(E)∈F
(P{X ∈ E} − Q{X ∈ E}).

For the converse, we take E ≜ {x ∈ X : p(x) > q(x)} and notice that

0 =
∫
X
(p(x)− q(x))dµ =

∫
E
(p(x)− q(x))dµ −

∫
Ec
(q(x)− p(x))dµ.

It follows that
∫

E(p(x)− q(x))dµ(x) =
∫

Ec(q(x)− p(x))dµ(x) and hence this choice of E attains the
supremum, i.e.

TV(P, Q) =
1
2

∫
X
|p(x)− q(x)|dµ(x) =

∫
E
(p(x)− q(x))dµ(x) = P{X ∈ E} − Q{X ∈ E} .

For any E ∈ σ(X), we define a detector ϕ(X,U) ≜ 1{X/∈E} to obtain Pe = P{X /∈ E}+ Q{X ∈ E} =

1− (P{X ∈ E}−Q{X ∈ E})⩾ 1−TV(P, Q), where the equality is achieved for E= {x ∈ X : p(x) > q(x)}.
(b) For the inf-representation, we notice that given a coupling PX,Y such that marginals PX = P and

PY = Q, we have EP[ f (X)]− EQ[ f (X)] = E[ f (X)− f (Y)]⩽ 2PX,Y {X = Y} for any f : X→ R such
that ∥ f ∥∞ ⩽ 1. Since TV(P, Q) = 1

2 sup f∈RX :∥ f ∥∞⩽1 EP[ f (X)]− EQ[ f (X)]⩽ PX,Y {X ̸= Y}, it follows
that the inf-representation is always an upper bound. To show that this bound is tight, we construct
the maximal coupling. We define probability π ≜

∫
X
(p(x)∧ q(x))dµ(x), and the following densities

r(x)≜
1
π

p(x) ∧ q(x), p1(x)≜
1

1 − π
(p(x)− p(x) ∧ q(x)), q1(x)≜

1
1 − π

(q(x)− p(x) ∧ q(x)).

We assume that U : Ω → [0,1] is an independent uniform random variable, and V,W, Z : Ω → R are
independent random variables with densities p1,q1,r respectively, We define the coupling as

X ≜ Z1{U⩽π} + V1{U>π}, Y ≜ Z1{U⩽π} + W1{U>π}.

That is, X = Y = Z with probability π, where Z is random and sampled from a distribution with
density r, and with probability 1 − π, the random variables X,Y are independently from densities
p1,q1 respectively. We observe that PX , PY ≪ µ and the relative densities are given as

dPX
dµ

= πr + (1 − π)p1 = p,
dPY
dµ

= πr + (1 − π)q1 = q.

That is, the joint distribution PX,Y is indeed a coupling of P and Q. Further, since TV(P, Q) =
1 −

∫
X
(p ∧ q)dµ, we get

PX,Y {X ̸= Y} = 1 − π = TV(P, Q).
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