Lecture-24: Le Cam’s method: applications

1 Applications of Le Cam’s method

Corollary 1.1. Consider a simple statistical decision theory setting with ® = ©, and loss function L : @ x @ —
IR, that is an a-metric on parameter space ©. Then, the minimax risk R*(®) £ infysupp.g EoL(0,0) satisfies
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Proof. For x > 0, we have (1 — /x)? > 0 and hence 2(1 + x) > (1 + /x)2. It follows that (1 — /x)? >
gljj):) From the definition of squared Hellinger distance and Le Cam distance and monotonicity of
expectation, we observe that H>(P,Q) > LC(P,Q). O

Example 1.2 (One-dimensional GLM). Consider i.i.d. observation sample X : (3 — X" with com-
mon distribution AV (6,1) for § € ® £ R. Considering the sufficient statistic X £ 1y | X;, the model
is simply {N(G, Ly:0e ]R}. We observe that /m(X — 6p) ~ N (y/m(8 — 6p),1). From the shift and
scale invariance of the total variation distance from Lemmal[A.1] we have
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TV(N (60, )N (61,-)) = TV(Pxjg, Pxje,) = TV(Pym(x—a0) 00 Py/mi(—6)e) = TVINV(0,1), N (s, 1)),
where s £ \/m(6; — 6p). Applying Le Cam’s Theorem to @' = {6),0;} C ©, we obtain
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We can compute the total variation distance between two unit variance Gaussians with means 0
and s > 0, as
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It follows that % (1-TV(N(0,1),N(5,1))) = 25?Q(5) and sup,. , 35°Q(5) = c for some absolute
constant ¢ ~ 0.083. It follows that R* > % On the other hand, we know that the minimax risk equals

%, so the two-point method is rate-optimal in this case.

Remark 1. In the above example, for two points separated by @(ﬁ), the corresponding hypothesis

cannot be tested with vanishing probability of error so that the resulting estimation risk (say in squared
error) cannot be smaller than % This convergence rate is commonly known as the parametric rate for
smooth parametric families focusing on the Fisher information as the sharp constant. More generally,
the % rate is not improvable for models with locally quadratic behavior

H?(Py,, Pay+1) = 12, for t — 0. ()

We have studied the sufficient conditions for this local behavior of f-divergences. Indeed, picking
0o € ©° and setting 6; = 6 + ﬁ, so that H%(Py, Pp,) = ©(L) from @). By Theorem we have



TV(P(W P®’”) 1 — ¢ for some constant ¢ and hence Le Cam’s Theorem yields the lower bound Q(-1)
for the squared error.

Example 1.3 (Uniform family). Consider the parameter space ® £ R and the parametric family
of distributions P(®) £ (U : # € R) where Uy : Q — (0,0) is a uniform random variable. Con-
sider @ £ {6,601} = {1,1+t}. Note that as opposed to the quadratic behavior in (2), we have

H?(U(0,6),U(0,0;)) = 2(1 = ,/S—‘f) =< t. For an m size i.i.d. sample, we have
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H2(U(0,00)%™, LI(0, 0, )™ :24/ _dx=2(1- (2)%) < mt.
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Recall that quadratic risk is a 2-metric on R+ and L(6p,6;) = t*>. Applying Le Cam’s theorem to @,
we obtain

1
R* > —supt?(1 — mt) = —.
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This rate is not achieved by the empirical mean estimator which only achieves % rate, but by the
maximum likelihood estimator @ML(X ) £ max {X1,...,Xm}. To observe this, we first note that
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To derive the ML estimator, we observe that
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That is, Oy (X) = max;c [, X;- Conditioned on the true parameter 6, the distribution of Oy (X) is
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For ® 2 ® £ R; and the quadratic risk L : ©@ x @ — R defined as L(6,0) = (6 — )2, we observe
that it is a 2-metric on ®. Thus, the quadratic risk for ML estimator is
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R = Exepop (6 — Oy (X))2 = me? / (1= 225y = me?
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Other types of behavior in t, and hence the rates of convergence, can occur even in compactly
supported location families.

The limitation of Le Cam’s two-point method is that it does not capture the correct dependency on
the dimensionality. To see this, let us revisit Example[I.2|for d dimensions.

Example 1.4 (d-dimensional GLM). Consider i.i.d. observation sample X : (3 — X" with common
distribution A(6,1;) for 6 € ® £ R?. For the sufficient statistic X = Ly X;, the model is simply
{N(G, L1):0¢€ ]Rd}. For quadratic risk L(6,0) £
minimax risk is known to be R* = % for any dimension d and sample size m. Let us compare this

with the best two-point lower bound. From the shift and scale invariance of the total variation
distance from Lemma we have

, the exact

1 1
TV(N (8o, —1a), N (61, 12)) = TV (e, Pio, ) = TV(P, (x5 log Pim(x—00)161) = TV(N (0, 1a), N (6, 1)),



where 8 £ \/m(6; — 6p). Applying Le Cam’s Theorem to @' £ {6y,6;} C © with a = 2, we get
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From rotational invariance of isotropic Gaussians, we can rotate the vector 6 to align with
a coordinate vector e; £ (1,0,...,0), which reduces the problem to one dimension, namely,

TV(N(0,1;), N (6,1;)) = TV(N(0,1;), N (||6]|, €1, 1s) = TV(N (0,1), N'(||6]|,,1)). Thus, we obtain

R* > isupsz(l —TV(N(0,1),N (s,1))).
4m s>0

Comparing the above display with (31.3), we see that the best Le Cam two-point lower bound in d
dimensions coincide with that in one dimension.

Let us mention in passing that although Le Cam’s two-point method is typically suboptimal for
estimating a high-dimensional parameter 6, for functional estimation in high dimensions e.g. estimating
a scalar functional T(6), Le Cam’s method is much more effective and sometimes even optimal. The
subtlety is that is that as opposed to testing a pair of simple hypotheses Hy : 6 = 0y versus Hj : 0 = 0,
we need to test Hy : T(6) =ty versus Hy : T(0) = t1, both of which are composite hypotheses and require
a sagacious choice of priors.

A Properties of total variation distance

Lemma A.1 (Shift and scale invariance of total variation). Consider X = R. Consider a random vector
X : Q — X0 with marginals Px,, Px, € M(X). Let Px,, Px, < p € M(X), such that relative densities are

dPx.
pi = ;:1 for i € {0,1}. We define shifted and scaled version of X as a random vector Y : Q — Y101} where
Y; £aX; + b fori€ {0,1} for some a,b € R. Then, TV(Py,, Py,) = TV (Px,, Px,).

Proof. Recall that TV(Px, Py) = supgcp(y)(P{X € E} — P{Y € E}). Therefore, we can write
1 1
TV(Py,,Py,) = sup (P{XO € —(E—- b)} - P{Xl € —(E- b)}) = TV(Px,,Px, ).
E€B(X) a a
O
Theorem A.2. For any sequence of distributions P,Q € M(X)N, we have following equivalences as m — o,

1 1
TV(PE™,Q%M) — 0 <= H?(Py,Qm) :0<a), TV(PE™,Q%M) 1 <= H*(Py,Qum) :a)(E),

Proof. For convenience, we assume that observation X : (3 — X™ is i.i.d. with common distribution

Qm € M(X). Then,
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Recall that TV (PZ™, Q%) —> 0if and only if H2(P2™, Q%™) — 0, which happens precisely when H?(Py, Qi) =
o(1). Similarly, TV(P,S?’”, ©m) — 1 if and only if H?(PS™,Q%™) — 2, which is further equivalent to

Hz(szQm):w(%)- 0
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