
Lecture-24: Le Cam’s method: applications

1 Applications of Le Cam’s method

Corollary 1.1. Consider a simple statistical decision theory setting with Θ = Θ̂, and loss function L : Θ × Θ →
R+ that is an α-metric on parameter space Θ. Then, the minimax risk R∗(Θ)≜ infθ̂ supθ∈Θ Eθ L(θ, θ̂) satisfies

R∗(Θ)⩾ sup
θ0,θ1∈Θ

L(θ0,θ1)

2α
(1 − LC(Pθ0 , Pθ1))⩾ sup

θ0,θ1∈Θ

L(θ0,θ1)

2α
(1 − H2(Pθ0 , Pθ1)). (1)

Proof. For x > 0, we have (1 −
√

x)2 ⩾ 0 and hence 2(1 + x) ⩾ (1 +
√

x)2. It follows that (1 −
√

x)2 ⩾
(1−x)2

2(1+x) . From the definition of squared Hellinger distance and Le Cam distance and monotonicity of

expectation, we observe that H2(P, Q)⩾ LC(P, Q).

Example 1.2 (One-dimensional GLM). Consider i.i.d. observation sample X : Ω → Xm with com-
mon distribution N (θ,1) for θ ∈ Θ≜R. Considering the sufficient statistic X̄ ≜ 1

m ∑m
i=1 Xi, the model

is simply
{
N (θ, 1

m ) : θ ∈ R
}

. We observe that
√

m(X̄ − θ0)∼N (
√

m(θ − θ0),1). From the shift and
scale invariance of the total variation distance from Lemma A.1, we have

TV(N (θ0,
1
m
),N (θ1,

1
m
)) =TV(PX̄|θ0

, PX̄|θ1
) =TV(P√m(X̄−θ0)|θ0

, P√m(X̄−θ0)|θ1
) =TV(N (0,1),N (s,1)),

where s ≜
√

m(θ1 − θ0). Applying Le Cam’s Theorem to Θ′ ≜ {θ0,θ1} ⊂ Θ, we obtain

R∗ ⩾ sup
θ0,θ1∈R

1
4
|θ0 − θ1|2 (1 − TV(N (θ0,

1
m
),N (θ1,

1
m
)) =

1
4m

sup
s>0

s2(1 − TV(N (0,1),N (s,1))).

We can compute the total variation distance between two unit variance Gaussians with means 0
and s > 0, as

TV(N (0,1),N (s,1)) =
1

2
√

2π

∫ s
2

−∞
(e−

1
2 x2 − e−

1
2 (x−s)2

)dx +
1

2
√

2π

∫ ∞

s
2

(e−
1
2 (x−s)2 − e−

1
2 x2

)dx

=
(

1 − 2Q
( s

2
))

.

It follows that s2

4m (1 − TV(N (0,1),N (s,1))) = 1
2m s2Q( s

2 ) and sups>0
1
2 s2Q( s

2 ) = c for some absolute
constant c ≈ 0.083. It follows that R∗ ⩾ c

m . On the other hand, we know that the minimax risk equals
1
m , so the two-point method is rate-optimal in this case.

Remark 1. In the above example, for two points separated by Θ( 1√
m ), the corresponding hypothesis

cannot be tested with vanishing probability of error so that the resulting estimation risk (say in squared
error) cannot be smaller than 1

m . This convergence rate is commonly known as the parametric rate for
smooth parametric families focusing on the Fisher information as the sharp constant. More generally,
the 1

m rate is not improvable for models with locally quadratic behavior

H2(Pθ0 , Pθ0+t) ≍ t2, for t → 0. (2)

We have studied the sufficient conditions for this local behavior of f -divergences. Indeed, picking
θ0 ∈ Θo and setting θ1 ≜ θ0 +

1√
m , so that H2(Pθ0 , Pθ1) = Θ( 1

m ) from (2). By Theorem A.2, we have
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TV(P⊗m
θ0

, P⊗m
θ1

)⩽ 1 − c for some constant c and hence Le Cam’s Theorem yields the lower bound Ω( 1
m )

for the squared error.

Example 1.3 (Uniform family). Consider the parameter space Θ ≜ R and the parametric family
of distributions P(Θ) ≜ (Uθ : θ ∈ R) where Uθ : Ω → (0,θ) is a uniform random variable. Con-
sider Θ′ ≜ {θ0,θ1} = {1,1 + t}. Note that as opposed to the quadratic behavior in (2), we have

H2(U(0,θ0),U(0,θ1)) = 2
(

1 −
√

θ0
θ1

)
≍ t. For an m size i.i.d. sample, we have

H2(U(0,θ0)
⊗m,U(0,θ1)

⊗m) = 2 − 2
∫ θ0

0

mxm−1

(θ0θ1)
m
2

dx = 2
(

1 −
( θ0

θ1

)m
2
)
≍ mt.

Recall that quadratic risk is a 2-metric on R+ and L(θ0,θ1) = t2. Applying Le Cam’s theorem to Θ′,
we obtain

R∗ ⩾
1
4

sup
t>0

t2(1 − mt) =
1

27m2 .

This rate is not achieved by the empirical mean estimator which only achieves 1
m rate, but by the

maximum likelihood estimator θ̂ML(X)≜ max{X1, . . . , Xm}. To observe this, we first note that

Rθ = EX∼Pθ⊗m (θ − 2X̄)2 =
1

m2

m

∑
i=1

EXi∼Pθ
(2Xi − θ)2 =

θ2

m

∫ 1

0
(2x − 1)2dx =

θ2

3m
.

To derive the ML estimator, we observe that

dPX|θ =
m

∏
i=1

dPθ(Xi) =
1

θm

m

∏
i=1

1{Xi⩽θ} =
1

θm1{maxi∈[m] Xi⩽θ}.

That is, θ̂ML(X) = maxi∈[m] Xi. Conditioned on the true parameter θ, the distribution of θ̂ML(X) is

Pθ⊗m
{

θ̂ML(X)⩽ x
}
= Pθ⊗m ∩m

i=1 {Xi ⩽ x} =
m

∏
i=1

Pθ {Xi ⩽ x} =
( x ∧ θ

θ

)m
1{x⩾0}.

For Θ̂ ≜ Θ ≜ R+ and the quadratic risk L : Θ × Θ̂ → R+ defined as L(θ, θ̂) ≜ (θ − θ̂)2, we observe
that it is a 2-metric on Θ. Thus, the quadratic risk for ML estimator is

Rθ = EX∼Pθ⊗m (θ − θ̂ML(X))2 = mθ2
∫ 1

0
(1 − x)2xm−1dx = mθ2 (m − 1)!2!

(m + 2)!
=

2θ2

(m + 2)(m + 1)
.

Other types of behavior in t, and hence the rates of convergence, can occur even in compactly
supported location families.

The limitation of Le Cam’s two-point method is that it does not capture the correct dependency on
the dimensionality. To see this, let us revisit Example 1.2 for d dimensions.

Example 1.4 (d-dimensional GLM). Consider i.i.d. observation sample X : Ω → Xm with common
distribution N (θ, Id) for θ ∈ Θ ≜ Rd. For the sufficient statistic X̄ ≜ 1

m ∑m
i=1 Xi, the model is simply{

N (θ, 1
m Id) : θ ∈ Rd

}
. For quadratic risk L(θ, θ̂) ≜

∥∥θ − θ̂
∥∥2

2 defined for all θ, θ̂ ∈ Θ ⊆ Rd, the exact

minimax risk is known to be R∗ = d
m for any dimension d and sample size m. Let us compare this

with the best two-point lower bound. From the shift and scale invariance of the total variation
distance from Lemma A.1, we have

TV(N (θ0,
1
m

Id),N (θ1,
1
m

Id)) =TV(PX̄|θ0
, PX̄|θ1

) =TV(P√m(X̄−θ0)|θ0
, P√m(X̄−θ0)|θ1

) =TV(N (0, Id),N (θ, Id)),
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where θ ≜
√

m(θ1 − θ0). Applying Le Cam’s Theorem to Θ′ ≜ {θ0,θ1} ⊂ Θ with α = 2, we get

R∗⩾ sup
θ0,θ1∈Rd

1
4
∥θ0 − θ1∥2

2 (1−TV(N (θ0,
1
m

Id),N (θ1,
1
m

Id))) = sup
θ∈Rd

1
4m

∥θ∥2
2 (1−TV(N (0, Id),N (θ, Id))).

From rotational invariance of isotropic Gaussians, we can rotate the vector θ to align with
a coordinate vector e1 ≜ (1,0, . . . ,0), which reduces the problem to one dimension, namely,
TV(N (0, Id),N (θ, Id)) = TV(N (0, Id),N (∥θ∥2 e1, Id) = TV(N (0,1),N (∥θ∥2 ,1)). Thus, we obtain

R∗ ⩾
1

4m
sup
s>0

s2(1 − TV(N (0,1),N (s,1))).

Comparing the above display with (31.3), we see that the best Le Cam two-point lower bound in d
dimensions coincide with that in one dimension.

Let us mention in passing that although Le Cam’s two-point method is typically suboptimal for
estimating a high-dimensional parameter θ, for functional estimation in high dimensions e.g. estimating
a scalar functional T(θ), Le Cam’s method is much more effective and sometimes even optimal. The
subtlety is that is that as opposed to testing a pair of simple hypotheses H0 : θ = θ0 versus H1 : θ = θ1,
we need to test H0 : T(θ) = t0 versus H1 : T(θ) = t1, both of which are composite hypotheses and require
a sagacious choice of priors.

A Properties of total variation distance

Lemma A.1 (Shift and scale invariance of total variation). Consider X ≜ R. Consider a random vector
X : Ω → X{0,1} with marginals PX0 , PX1 ∈ M(X). Let PX0 , PX1 ≪ µ ∈ M(X), such that relative densities are

pi ≜
dPXi
dµ for i ∈ {0,1}. We define shifted and scaled version of X as a random vector Y : Ω → Y{0,1} where

Yi ≜ aXi + b for i ∈ {0,1} for some a,b ∈ R. Then, TV(PY0 , PY1) = TV(PX0 , PX1).

Proof. Recall that TV(PX , PY) = supE∈B(X)(P{X ∈ E} − P{Y ∈ E}). Therefore, we can write

TV(PY0 , PY1) = sup
E∈B(X)

(
P
{

X0 ∈
1
a
(E − b)

}
− P

{
X1 ∈

1
a
(E − b)

})
= TV(PX0 , PX1).

Theorem A.2. For any sequence of distributions P, Q ∈M(X)N, we have following equivalences as m → ∞,

TV(P⊗m
m , Q⊗m

m )→ 0 ⇐⇒ H2(Pm, Qm) = o
( 1

m

)
, TV(P⊗m

m , Q⊗m
m )→ 1 ⇐⇒ H2(Pm, Qm) = ω

( 1
m

)
,

Proof. For convenience, we assume that observation X : Ω → Xm is i.i.d. with common distribution
Qm ∈M(X). Then,

H2(P⊗m, Q⊗m) = 2 − 2E

√
m

∏
i=1

dPm

dQm
(Xi) = 2 − 2

m

∏
i=1

E

√
dPm

dQm
(Xi) = 2 − 2

(
E

√
dPm

dQm
(Xi)

)m
.

Recall that TV(P⊗m
m , Q⊗m

m )→ 0 if and only if H2(P⊗m
m , Q⊗m

m )→ 0, which happens precisely when H2(Pm, Qm) =
o(1). Similarly, TV(P⊗m

m , Q⊗m
m ) → 1 if and only if H2(P⊗m

m , Q⊗m
m ) → 2, which is further equivalent to

H2(Pm, Qm) = ω( 1
m ).
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