
Lecture-25: Assouad’s lemma

1 Assouad’s Lemma

From Example 31.3 we see that Le Cam’s two-point method effectively only perturbs one out of d
coordinates, leaving the remaining d − 1 coordinates unexplored; this is the source of its suboptimality.
In order to obtain a lower bound that scales with the dimension, it is necessary to randomize all d
coordinates. Our next topic Assouad’s Lemma is an extension in this direction.

Theorem 1.1 (Assouad’s lemma). Assume that the loss function L satisfies the α-triangle inequality. Suppose
Θ contains a subset Θ′ ≜

{
θb : b ∈ {0,1}d

}
indexed by the hypercube, such that L(θb,θb′) ⩾ βdH(b,b′) for all

b,b′ and some β > 0. Then

R∗(Θ)⩾
βd
4α

(
1 − max

dH(b,b′)=1
TV(Pθb , Pθb′

)
)

. (1)

Proof. We lower bound the Bayes risk with respect to the uniform prior over Θ′. Given any estimator
θ̂(X), define b̂ ∈ argmin L(θ̂,θb). Then for any b ∈ {0,1}d,

βdH(b̂,b)⩽ L(θb̂,θb)⩽ α(L(θb̂, θ̂) + L(θ̂,θb))⩽ 2αL(θ̂,θb).

Let b : Ω → {0,1}d be a discrete uniform random variable, and we have b → θb → X. Then

EL(θ̂,θb)⩾
β

2α
EdH(b̂,b) =

β

2α

d

∑
i=1

P
{

b̂i ̸= bi

}
⩾

β

4α

d

∑
i=1

(1 − TV(PX|bi=0, PX|bi=1)),

where the last step is again by Theorem 7.7, just like in the proof of Theorem 31.1. Each total variation
can be upper bounded as

TV(PX|bi=0, PX|bi=1) = TV
( 1

2d−1 ∑
b:bi=1

Pθb ,
1

2d−1 ∑
b:bi=1

Pθb

)
⩽ max

dH(b,b′)=1
TV(Pθb , Pθb′

)

where the equality follows from the Bayes rule, and the inequality follows from the convexity of total
variation (Theorem 7.5). This completes the proof.

Example 1.2 (d-dimensional GLM). Consider the quadratic loss first. To apply Theorem 1.1, con-
sider the hypercube θb = ϵb, where b ∈ {0,1}d. Then ∥θb − θb′∥2

2 = ϵ2dH H(b,b′). Applying Theo-
rem 1.1 yields

R∗⩾
ϵ2d
4

(
1 − max

b,b′∈{0,1}d :dH(b,b′)=1
TV
(
N (ϵb,

1
m

Id),N (ϵb′,
1
m

Id)
))

=
ϵ2d
4

(
1 − TV

(
N (0,

1
m
),N (ϵ,

1
m
)
))

,

where the last step applies (7.11) for f -divergence between product distributions that only differ
in one coordinate. Setting ϵ = 1√

m and by the scale-invariance of TV, we get the desired R∗ ⩾≈ d
m .

Next, let’s consider the loss function ∥θb − θb′∥∞. In the same setup, we only have ∥θb − θb′∥∞ ⩾
ϵdH(b,b′). Then Assouad’s lemma yields R∗ ⩾≈ 1√

m , which does not depend on dimension d. In

fact, R∗ ≍
√

lnd
m as shown in Corollary 28.8. In the next section, we will discuss Fano’s method

which can resolve this deficiency.
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2 Assouad’s Lemma from the mutual information method

One can integrate the Assouad’s idea into the mutual information method. Consider the Bayesian
setting of Theorem 1.1, where B : Ω → {0,1}d is i.i.d. Bernoulli random vector with mean 1

2 . From the
rate-distortion function of the Bernoulli source in Section 26.1.1, we know that for any B̂ and τ > 0 there
is some τ′ > 0 such that I(B; X)⩽ d(1 − τ) ln2 which implies that

EdH(B̂, B)⩾ dτ′.(31.6)

Here τ′ is related to τ by τ ln2 = h(τ′). Thus, using the same “hypercube embedding B → θB”, the
bound similar to (1) will follow once we can bound I(B; X) away from d ln2. Can we use the pairwise
total variation bound in (1) to do that? Yes! Notice that thanks to the independence of bi’s we have1

I(Bi; X | Bi−1) = I(Bi; X, Bi−1)⩽ I(Bi; X, B\{i}) = I(Bi; X | B\{i}).

Applying the chain rule leads to the upper bound

I(B; X) =
d

∑
i=1

I(Bi; X | Bi−1)⩽
d

∑
i=1

I(Bi; X | B\{i})⩽ d ln2 max
dH(B,B′)=1

TV(PX|B, PX|B′),

where in the last step we used the fact that whenever Bi ∼ Ber(1/2),

I(Bi; X)⩽ TV(PX|Bi=0, PX|Bi=1) ln2.

which follows from (7.39) by noting that the mutual information is expressed as the Jensen- Shannon
divergence as 2I(B; X) = JS(PX|Bi=0, PX|Bi=1). Combining (31.6) and (31.7), the mutual information
method implies the following version of the Assouad’s lemma. Under the assumption of Theorem

31.2 and defining f (t)≜ h−1
(
(1−t)

2 ln2
)

for h−1 : [0, ln2]→ [0, 1
2 ] being the inverse of the binary entropy

function, we get

R∗(Θ)⩾
β

4α
f

(
max

dH(θ,θ′)=1
TV(Pθ , Pθ′)

)
.

Note that (31.9) is slightly weaker than (31.5). Nevertheless, as seen in Example 31.4, Assouad’s lemma
is typically applied when the pairwise total variation is bounded away from one by a constant, in which
case (31.9) and (31.5) differ by only a constant factor. In all, we may summarize Assouad’s lemma as a
convenient method for bounding I(B; X) away from the full entropy (d bits) on the basis of distances
between PX|B corresponding to adjacent b’s.

A Evaluation of rate-distortion function

Recall that rate-distortion function R : R+ → R is defined as

R(D)≜ inf
PX̂|X :Ed(X̂,X)⩽D

I(X; X̂).

A.1 Bernoulli Source

Consider an i.i.d. random vector X : Ω → Xm with common mean EX1 = p and its estimate X̂ : Xm →
X̂m for alphabets X = X̂≜ {0,1}, with Hamming distortion dH(X, X̂) = ∑m

i=11{X ̸=X̂}. Then d(X, X̂) =

1
m dH(X, X̂) is the bit-error rate (fraction of erroneously decoded bits). By symmetry, we may assume
that p ⩽ 1

2 .

Theorem A.1. Let h : [0,1] → R+ be binary entropy function defined for each p ∈ [0,1 as h(p) ≜ −p ln p −
p̄ ln p̄, then rate-distortion function for a random variable X : Ω → {0,1} with mean EX = p is

R(D)≜ (h(p)− h(D))+.
1Equivalently, this also follows from the convexity of the mutual information in the channel (cf. Theorem 5.3).
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Proof. Since Dmax = p, in the sequel we can assume D < p for otherwise there is nothing to show. For
the converse, consider any PX̂|X such that d(X, X̂) = P

{
X ̸= X̂

}
⩽ D ⩽ p ⩽ 1

2 . Then

I(X; X̂) = H(X)− H(X | X̂) = H(X)− H(X + X̂ | X̂)

⩾ H(X)− H(X + X̂) = h(p)− h(P
{

X ̸= X̂
}
)⩾ h(p)− h(D).

In order to achieve this bound, we need to saturate the above chain of inequalities, in particular, choose
PX̂|X so that the difference X + X̂ is independent of X̂. Let X = X̂ + Z, where X̂ ∼ Ber(p′) and is
independent of Z ∼ Ber(D), and p′ is such that the convolution gives exactly Ber(p), namely,

p′ ∗ D ≜ p′(1 − D) + (1 − p′)D = p, i.e., p′ =
p − D

1 − 2D
.

In other words, the backward channel PX|X̂ is exactly BSC(D) and the resulting PX̂|X is our choice of the
forward channel PX̂|X . Then,

I(X; X̂) = H(X)− H(X | X̂) = H(X)− H(X) = h(p)− h(D),

yielding the upper bound R(D)⩽ h(p)− h(D).

Remark 1. Here is a more general strategy (which we will later implement in the Gaussian case.) Denote
the optimal forward channel from the achievability proof by P∗

X̂|X and the associated backward channel

by P∗
X|X̂ which is BSC(D). We need to show that there is no better PX̂|X with P

{
X ̸= X̂

}
⩽ D and a

smaller mutual information. Then

I(PX , PX̂|X) = D(PX|X̂∥PX | PX̂) = D(PX|X̂∥P∗
X|X̂ | PX̂) + EP ln

P∗
X|X̂
PX

⩾ H(X) + EP[ln D1{X ̸=X̂} + ln D̄1{X=X̂}]⩾ h(p)− h(D).

where the last inequality uses P
{

X ̸= X̂
}
⩽ D ⩽ 1

2 .

Example A.2. For example, when p = 1
2 , D = .11, we have R(D) ≈ 1

2 bits. In the Hamming game
described in Section 24.2 where we aim to compress 100 bits down to 50, we indeed can do this
while achieving 11% average distortion, compared to the naive scheme of storing half the string
and guessing on the other half, which achieves 25% average distortion. Note that we can also get
very tight non-asymptotic bounds, cf. Exercise V.3.

Remark 2. By WLLN, the distribution PX ≜ Ber(p)⊗m concentrates near the Hamming sphere of radius
mp as m grows large. Recall that in proving Shannon’s rate distortion theorem, the optimal codebook
are drawn independently from PX̂ ≜ Ber(p′)⊗m with p′ = p−D

1−2D . Note that p′ = 1
2 if p = 1

2 but p′ < p if
p < 1

2 . In the latter case, the reconstruction points concentrate on a smaller sphere of radius mp′ and
none of them are typical source realizations, as illustrated in Figure 26.1.
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