Lecture-25: Assouad’s lemma

1 Assouad’s Lemma

From Example 31.3 we see that Le Cam’s two-point method effectively only perturbs one out of d
coordinates, leaving the remaining 4 — 1 coordinates unexplored; this is the source of its suboptimality.
In order to obtain a lower bound that scales with the dimension, it is necessary to randomize all d
coordinates. Our next topic Assouad’s Lemma is an extension in this direction.

Theorem 1.1 (Assouad’s lemma). Assume that the loss function L satisfies the a-triangle inequality. Suppose
© contains a subset © = {6;, tbe {O,l}d} indexed by the hypercube, such that L(6,,0y) > Bdy (b,b) for all
b,b" and some B > 0. Then
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Proof. We lower bound the Bayes risk with respect to the uniform prior over ®'. Given any estimator
0(X), define b € argmin L(8,6,). Then for any b € {0,1}",

Bd(b,b) < L(6;,05) < a(L(6;,0) +L(6,0,)) <2aL(6,6).

Letb: Q) — {0,1}d be a discrete uniform random variable, and we have b — 8, — X. Then
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where the last step is again by Theorem 7.7, just like in the proof of Theorem 31.1. Each total variation
can be upper bounded as
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where the equality follows from the Bayes rule, and the inequality follows from the convexity of total
variation (Theorem 7.5). This completes the proof. O

Example 1.2 (d-dimensional GLM). Consider the quadratic loss first. To apply Theorem [1.1] con-
sider the hypercube 6, = b, where b € {0,1}. Then |6, — 6y ||2 = €2dH(b,b'). Applying Theo-
rem [1.T]yields
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where the last step applies (7.11) for f-divergence between product distributions that only differ
in one coordinate. Setting € = im and by the scale-invariance of TV, we get the desired R* >~ %
Next, let’s consider the loss function ||6, — 0y || - In the same setup, we only have |6, — 0|, >
edp(b,b’). Then Assouad’s lemma yields R* >~ f’ which does not depend on dimension d. In

fact, R* =< 4/ % as shown in Corollary 28.8. In the next section, we will discuss Fano’s method
which can resolve this deficiency.



2 Assouad’s Lemma from the mutual information method

One can integrate the Assouad’s idea into the mutual information method. Consider the Bayesian
setting of Theorem where B: () — {0,1}d is i.i.d. Bernoulli random vector with mean % From the

rate-distortion function of the Bernoulli source in Section 26.1.1, we know that for any B and T > 0 there
is some 7/ > 0 such that I(B; X) < d(1 — 7)In2 which implies that

Edy(B,B) > dt'.(31.6)

Here 7’ is related to T by 7In2 = h(t’). Thus, using the same “hypercube embedding B — 03”, the
bound similar to (1) will follow once we can bound I(B; X) away from dIn2. Can we use the pairwise
total variation bound in (1) to do that? Yes! Notice that thanks to the independence of b;’s we hav

I(B;;X |B" ') =1(B;X,B" ") <I(B;X,B\(y) = I(B;; X | B (y)-
Applying the chain rule leads to the upper bound
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where in the last step we used the fact that whenever B; ~ Ber(1/2),
I(Bl, X) < TV(PX‘B,‘ZO/ PX‘BfZl) In2.

which follows from (7.39) by noting that the mutual information is expressed as the Jensen- Shannon
divergence as 2I(B;X) = JS(Px|p,~o, Px|p,=1)- Combining (31.6) and (31.7), the mutual information
method implies the following version of the Assouad’s lemma. Under the assumption of Theorem
31.2 and defining f(t) £ h~! <@ ln2> for h=1:[0,In2] — [0, ] being the inverse of the binary entropy

function, we get

dy(6,6))=1

R*(©) > Aﬁf( max TV(PQ,P9/>>.

Note that (31.9) is slightly weaker than (31.5). Nevertheless, as seen in Example 31.4, Assouad’s lemma
is typically applied when the pairwise total variation is bounded away from one by a constant, in which
case (31.9) and (31.5) differ by only a constant factor. In all, we may summarize Assouad’s lemma as a
convenient method for bounding I(B; X) away from the full entropy (d bits) on the basis of distances
between Py corresponding to adjacent ’s.

A Evaluation of rate-distortion function
Recall that rate-distortion function R : Ry — R is defined as

R(D) & inf I(X;X).
Py x:Ed(X,X)<D

A.1 Bernoulli Source

Consider an i.i.d. random vector X : QO — X" with common mean EX; = p and its estimate X : X" —
X™ for alphabets X = X £ {0,1}, with Hamming distortion dy (X, X) = Y7, H{X#Z}' Then d(X,X) =
1 & . . . .

+-dr (X, X) is the bit-error rate (fraction of erroneously decoded bits). By symmetry, we may assume
that p < %

Theorem A.1. Let h: [0,1] — Ry be binary entropy function defined for each p € [0,1 as h(p) =
pInp, then rate-distortion function for a random variable X : Q3 — {0,1} with mean EX = p is

R(D) = (h(p) — h(D))+.

1Equivalently, this also follows from the convexity of the mutual information in the channel (cf. Theorem 5.3).




Proof. Since Dmax = p, in the sequel we can assume D < p for otherwise there is nothing to show. For
the converse, consider any P}?\X such that d(X,X) = P {X # X} <D<p< % Then

I(X;X)=H(X)-H(X|X)=H(X)-H(X+X|X)
> H(X) - H(X + X) = h(p) = h(P{X # X}) > h(p) — h(D).

In order to achieve this bound, we need to saturate the above chain of inequalities, in particular, choose
Pg|x so that the difference X + X is independent of X. Let X = X + Z, where X ~ Ber(p’) and is

independent of Z ~ Ber(D), and p’ is such that the convolution gives exactly Ber(p), namely,
p—D
1-2D°

p'xDEp'(1-D)+(1—-p)D=p,ie,p =

In other words, the backward channel PX| % is exactly BSC(D) and the resulting P}‘(\ x is our choice of the
forward channel PX\ x- Then,

I(X;X) = H(X) - H(X | X) = H(X) — H(X) = h(p) — h(D),

yielding the upper bound R(D) < h(p) — h(D). O

Remark 1. Here is a more general strategy (which we will later implement in the Gaussian case.) Denote

the optimal forward channel from the achievability proof by P;ﬁ(|  and the associated backward channel

by P}*q ¢ which is BSC(D). We need to show that there is no better Py y with P {X#£X}<Danda

smaller mutual information. Then

*
PX\X
Px

I(Px, Py x) = D(Px g lIPx | Px) = D(Px|IPx

where the last inequality uses P{X # X} < D < 3.

Example A.2. For example, when p = %,D = .11, we have R(D) ~ % bits. In the Hamming game
described in Section 24.2 where we aim to compress 100 bits down to 50, we indeed can do this
while achieving 11% average distortion, compared to the naive scheme of storing half the string
and guessing on the other half, which achieves 25% average distortion. Note that we can also get
very tight non-asymptotic bounds, cf. Exercise V.3.

Remark 2. By WLLN, the distribution Px = Ber(p)®™ concentrates near the Hamming sphere of radius
mp as m grows large. Recall that in proving Shannon’s rate distortion theorem, the optimal codebook

are drawn independently from Py = Ber(p')®™ with p’ = %. Note that p’ = 1 if p= 1 butp’ < p if
p < % In the latter case, the reconstruction points concentrate on a smaller sphere of radius mp’ and
none of them are typical source realizations, as illustrated in Figure 26.1.
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