
Lecture-26: Fano’s method

1 Fano’s method

We discuss another method for proving minimax lower bound by reduction to multiple hypothesis
testing. We call this program Fano’s method, based on the Fano’s inequality to show the impossibility
result in one of the steps.
Step 1. We assume that the loss function L : Θ × Θ → R+ is a metric.
Step 2. Consider an ϵ-packing of the parameter space Θ, namely, a finite collection of parameters T ≜

{θi ∈ Θ : i ∈ [M]} ⊂ Θ whose minimum separation is mini ̸=j∈[M] L(θi,θj)⩾ ϵ.
Step 3. Suppose we can show that given observation X one cannot reliably distinguish these hypothe-

ses Θ′ ≜ {θ1, . . . ,θM}. That is, Pθi

{
θ̃(X) ̸= θi

}
> 0.

Step 4. Then the best estimation error EL(θ̂,θ) is at least proportional to ϵ.
Step 5. The impossibility of testing is often shown by applying Fano’s inequality in Corollary A.3,

which bounds the probability of error of testing in terms of the mutual information.

Theorem 1.1 (Fano). Let L : Θ × Θ → R+ be a metric on parameter space Θ. Fix an estimator θ̂. For any
T ⊆ Θ and ϵ > 0,

P
{

L(θ, θ̂)⩾
ϵ

2

}
⩾ 1 − C(T) + ln2

ln M(T, L,ϵ)
, (1)

where C(T)≜ supπ∈M(T) I(θ; X) is the capacity of the channel θ → X with input space T. Consequently,

inf
θ̂

sup
θ∈Θ

Eθ L(θ, θ̂)r ⩾ sup
T⊂Θ,ϵ>0

( ϵ

2

)r(
1 − C(T) + ln2

ln M(T, L,ϵ)

)
.(31.11)

Proof. It suffices to show (1), since the second result follows from the first applying Markov inequality
for increasing function f : R+ → R+ defined as f (x) = xr for any x ∈ R+ and r ⩾ 1. Fix T ⊆ Θ. Consider
an ϵ-packing T′ ≜ {θ1, . . . ,θM} ⊂ T such that mini ̸=j∈[M] L(θi,θj) > ϵ. For each θ ∈ T′, we define ϵ

2 balls
B(θ, ϵ

2 )≜
{

θ ∈ Θ : L(θ,θi)⩽
ϵ
2
}

, and observe that
{

B(θ, ϵ
2 ) : θ ∈ T′} is a set of disjoint balls. Let θ : Ω → T′

be uniformly distributed and X ∼ Pθ conditioned on parameter θ. Given any estimator θ̂ : X → Θ,
construct a test by rounding estimate θ̂(X) to output θ̃(X)≜ argminθ∈T′ L(θ, θ̂(X)). Let θ ∈ T′. From the
triangle inequality for metric L and definition of θ̃(X), we get L(θ, θ̃(X))⩽ L(θ, θ̂(X)) + L(θ̂(X), θ̃(X))⩽
2L(θ, θ̂(X)), and thus

P
{

θ ̸= θ̃(X)
}
= E1{θ ̸=θ̃(X)} ⩽ E1{L(θ,θ̃(X))>ϵ} ⩽ P

{
L(θ, θ̂(X)) >

ϵ

2

}
.

Recall that |T′| = M. The result follows from the application of Fano’s inequality from Corollary A.3 to
the Markov chain θ → X → θ̂ → θ̃ with uniformly distributed θ ∈ T′ to lower bound P

{
θ ̸= θ̃(X)

}
and

using the definition of C(T)⩾ I(θ; X).

In applying Fano’s method, since it is often difficult to evaluate the capacity C(T), it is useful to recall
from Theorem 5.9 that C(T) coincides with the KL radius of the set of distributions {Pθ : θ ∈ T}, namely,
C(T)≜ infQ supθ∈T D(Pθ∥Q). As such, choosing any Q leads to an upper bound on the capacity. As an
application, we revisit the d-dimensional GLM in Corollary 28.8 under the ℓq loss for 1 ⩽ q ⩽ ∞, with
the particular focus on the dependency on the dimension. For a different application in sparse setting
see Exercise VI.12.
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Example 1.2. Consider GLM with i.i.d. sample size m, where Pθ = N (θ, Id)
⊗m. Taking natural log-

arithms here and below, we have

D(Pθ∥Pθ′) =
m
2

∥∥θ − θ′
∥∥2

2 .

In other words, KL-neighborhoods are ℓ2 balls. As such, let us apply Theorem 1.1 to T = B2(ρ) for

some ρ > 0 to be specified. Then C(T) ⩽ supθ∈T D(Pθ∥P0) = m ρ2

2 . To bound the packing number
from below, we applying the volume bound in Theorem 27.3,

M(B2(ρ),∥·∥q ,ϵ)⩾
ρd vol(B2)

ϵd vol(Bq)
⩾

( cqρd
1
q

ϵ
√

d

)d
.

for some constant cq, where the last step follows the volume formula (27.13) for ℓq balls. Choosing

ρ =
√

d
n and ϵ =

cq
e2 ρd

1
q −

1
2 , an application of Theorem 1.1 yields the minimax lower bound

Rq ≜ inf
θ̂

sup
θ∈Rd

EX∼θ

∥∥θ̂ − θ
∥∥

q ⩾ Cq
d

1
q

m
(31.12)

for some constant Cq depending on q. This is the same lower bound as that in (30.9) obtained via
the mutual information method plus the Shannon lower bound which is also volume-based.

Remark 1. For any q ⩾ 1, (31.12) is rate-optimal since we can apply the MLE θ̂ = X. Note that at q = ∞,
the constant Cq is still finite since vol(B∞) = 2d. However, for the special case of q = ∞, (31.12) does not
depend on the dimension at all, as opposed to the correct dependency

√
lnd shown in Corollary 28.8. In

fact, previously in Example 31.4 the application of Assouad’s lemma yields the same suboptimal result.
So is it possible to fix this looseness with Fano’s method? It turns out that the answer is yes and the
suboptimality is due to the volume bound on the metric entropy, which, as we have seen in Section
27.3, can be ineffective if ϵ scales with dimension. Indeed, if we apply the tight bound of M(B2,∥·∥∞ ,ϵ)

in (27.18)1,withϵ =
√

c lnd
m and ρ =

√
c′ lnd

m for some absolute constants c, c′, we do get R∞ ⩾≈
√

lnd
m as

desired.

Remark 2. It is sometimes convenient to further bound the KL radius by the KL diameter, since C(T)⩽
diamKL(T)≜ supθ,θ′∈T D(Pθ′∥Pθ) (cf. Corollary 5.8). This suffices for Example 31.5.

Remark 3. In Theorem 1.1 we actually lower bound the global minimax risk by that restricted on a
parameter subspace T ⊂ Θ for the purpose of controlling the mutual information, which is often difficult
to compute. For the GLM considered in Example 31.5, the KL divergence is proportional to squared ℓ2
distance and T is naturally chosen to be a Euclidean ball. For other models such as the covariance model
(Exercise VI.16) wherein the KL divergence is more complicated, the KL neighborhood T needs to be
chosen carefully. Later in Section 32.4 we will apply the same Fano’s method to the infinite-dimensional
problem of estimating smooth density.

A Fano’s inequality

Definition A.1 (Binary entropy and KL divergence). Consider binary random variables X,Y : Ω →
X ≜ {0,1} with respective probability mass functions (p,1 − p), (q,1 − q) ∈ M(X) for any p,q ∈ [0,1].
Then binary entropy h : [0,1] → [0,1] is defined as h(p) ≜ H(X) = −p ln p − (1 − p) ln(1 − p) for all
p ∈ [0,1], and the binary KL divergence is defined as d : [0,1] × [0,1] → R+ as d(p,q) ≜ D(PX∥PY) =

p ln p
q + (1 − p) ln (1−p)

(1−q) for all p,q ∈ [0,1].

Theorem A.2 (Fano’s inequality). Let |X|= M < ∞, X → Y → X̂ be a Markov chain, and Pe ≜ P
{

X ̸= X̂
}

.
Then the following are true
(a) H(X | Y)⩽ FM(1 − Pe)≜ Pe ln(M − 1) + h(Pe).

1In fact, in this case we can also choose the explicit packing {ϵe1, . . . ,ϵed}
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(b) If Pmax ≜ maxx∈X PX(x) > 0, then I(X;Y)⩾ (1 − Pe) ln 1
Pmax

− h(Pe) regardless of |X|.

Proof. Consider two joint distributions PX,Y,X̂ = PXPY|XPX̂|Y and QX,Y,X̂ = QXPYPX̂|Y, and the data pro-
cessor (kernel) (X,Y, X̂) 7→ 1{X ̸=X̂}. We note that X and Y are independent under Q, and the observa-
tion Y has identical marginal PY = QY under both P and Q. Further, the kernel PX̂|Y = QX̂|Y, i.e. the
estimator for X is same for both distributions based on the observation Y. We recall the KL divergence
data processing inequality for Markov chain X → Y → X̂, such that

D(PX,Y,X̂∥QX,Y,X̂)⩾ D(PX,X̂∥QX,X̂)⩾ d(P
{

X = X̂
}
∥Q

{
X = X̂

}
).

From the definition of KL divergence, mutual information, and joint distributions P, Q, we get

D(PX,Y,X̂∥QX,Y,X̂) = EP ln
dPXdPY|X
dQXdPY

= D(PX∥QX) + I(X;Y)⩾ d(P
{

X = X̂
}
∥Q

{
X = X̂

}
).

(a) Let UX ∈ M(X) be a uniform distribution over X. Then for QX = UX , we obtain D(PX∥QX) =
ln M − H(X) and since I(X;Y) = H(X)− H(X | Y), we get D(PX∥QX) + I(X;Y) = ln M − H(X | Y).
Further, since X and Y are independent under Q, we get Q

{
X = X̂

}
= ∑x∈X Q

{
X = X̂ = x

}
=

∑x∈X QX(x)QX̂(x) = 1
M . It follows that

ln M − H(X | Y)⩾ d
(

Pe∥1 − 1
M

)
= −h(Pe) + (1 − Pe) ln M + Pe ln

M
M − 1

.

(b) When PX = QX , we get D(PX∥QX) = 0 and Q
{

X = X̂
}
= ∑X PX(x)QX̂(x)⩽ Pmax. Therefore,

I(X;Y)⩾ d(1 − Pe∥Q
{

X = X̂
}
) = −h(Pe)− (1 − Pe) ln Q

{
X = X̂

}
− Pe ln Q

{
X ̸= X̂

}
⩾−h(Pe) + (1 − Pe) ln

1
Q
{

X = X̂
} ⩾−h(Pe)− (1 − Pe) ln Pmax.

The following corollary of the previous result emphasizes its role in providing converses or impos-
sibility results for statistics and data transmission.

Corollary A.3 (Lower bound on average probability of error). Consider Markov chain W → X →Y → Ŵ,
where W is uniform on [M]≜ {1, . . . , M}. Then

Pe ≜ P
{

W ̸= Ŵ
}
⩾ 1 − I(X;Y) + h(Pe)

ln M
⩾ 1 − I(X;Y) + ln2

ln M
.

Proof. Apply Theorem A.2 and the data processing for mutual information I(W;Ŵ)⩽ I(X;Y).
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