Lecture-02: Sample and Event Space

1 Mathematical preliminaries

1.1 Properties of set operations

Proposition 1.1. Let I be an arbitrary index set and (A; C Q :i € I) a family of sets. Let B C Q) be another set.
(a) (ﬂia Ai) UB=nN;e1(A; UB).

(b) (We] Ai) NB=nN;c1(A; N B).
C c
(c) De Morgan’s Law: ( Nicr Ai) = Uje1 A4S, ( Uier Ai> = N1 AS.

Proof. Recall that to show a set S; = Sj, we have to show that S; C S and S; € S1. To show that 5 C Sy,
we take any element x € S and show that x € Sy. Similarly, we show the converse.

(a) Let x € (ﬂ,-el Ai) U B, then either (i) x € B or (ii) x € A; foreach i € I. If x € B, then x € A; U B for
each i € [ and hence x € N;jc;(A; UB). If x € A; for each i € I, then x € A; U B for each i € I and hence
X e ﬂieI(Ai U B).
Similarly, we can show the converse.
O

1.2 Functions and cardinality

Definition 1.2 (Function). For sets A, B, a function f from set B to set A is a subset of cartesian product
B x A such that for each element b € B there is a unique element a € A such that (b,a) € f. This unique
element is denoted by a = f(b). That is, {(b, f(b)) : b € B} C B x A. The set B and A are called the domain
and co-domain of function f, and the set f(B) = {f(b) € A:b € B} C A is called the range of function f.
The collection of all A-valued functions with the domain B is denoted by AZ.

Example 1.3. Consider set B = {1,2,3} and set A = {a,b}.

(a) The cartesian product of two setsis B x A = {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b) }.

(b) The following subset of the cartesian product {(1,a),(2,a),(3,b)} C B x A corresponds to a function
f:B— Asuchthat f(1) = f(2) =4, f(3) = b. We will denote this function by ordered tuple (aab).

(c) The following subset {(1,a),(2,b),(2,c)} C B x A doesn’t correspond to a function.

(d) The collection A? is defined by the set of ordered tuples

{(aaa), (aab), (aba), (abb), (baa), (bab), (bba), (bbb)} .

Definition 1.4 (Inverse Map). For a function f € A, we define set inverse map f~! € P(B)P) for each
CcP(A)asfH(C)E{beB:f(b)cC}.

Example 1.5. Let B = {1,2,3} and A = {4,b} and f be denoted by the ordered tuple (aba), then
f1({a}) ={1,3} and f1({b}) = {2}.



Definition 1.6 (Injective, surjective, bijective). A function f € AP is
injective: if for any distinct b # ¢ € B, we have f(b) # f(c),
surjective: if f(B) = A, and

Example 1.7. injective: Let B = {1,2,3} and A = {a,b,c,d}. Then (abc) is an injective function.
surjective: Let B={1,2,3,4} and A = {a,b,c}. Then (abca) is a surjective function.
bijective: Let B={1,2,3} and A = {a,b,c}. Then (abc) is a bijective function.

Definition 1.8 (Cardinality). We denote the cardinality of a set A by |A|. If there is a bijection between two
sets, they have the same cardinality. Any set which is bijective to the set [N] has cardinality N.

Remark 1. If there is an injective function f : B— A, then the cardinality of B is at most that of A, i.e. |B| < |A|

Example 1.9. The cardinality of A = {a,b,c} is |A| = 3, since there is a bijection between B = {1,2,3}
and A={a,b,c}.

Definition 1.10 (Countable). Any set which is bijective to a subset of natural numbers IN is called a count-
able set. Any set which has a finite cardinality is called a countably finite set. Any set which is bijective to
the set of natural numbers IN is called a countably infinite set.

Example 1.11 (Number of functions). Let B and A be finite sets with cardinalities n; = |B|,n, = |A|

respectively, then the following are true.

(a) The number of functions |AP| = |A|‘B‘ =nyl.

(b) If n; = ny = n, the number of bijective function from B — A is n!.
1’[2!

(np—np)t”

(d) If ny < nq, then the number of surjective functions is ?.

(c) If np > ny, then the number of injective functions is

Exercise 1.12. Show the following are true.
1. |AB| = |A|®l.
2. ANl s set of all A-valued N-length sequences.

3. AN is a set of all A-valued countably infinite sequences indexed by the set of natural numbers
IN.

4. The sets IN,Z,7Z,0Q have the same cardinality.
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