Lecture-03: Conditional Expectation

1 Conditional expectation

Consider a probability space (Q,F,P), a random variable X : O — R defined on this probability space,
and a nontrivial event E € F such that P(E) > 0.

Definition 1.1. The conditional distribution of X conditioned on a nontrivial event E is defined for each

xERas PH{X<x}NE
Fyj(x) £ PUX<x}nE) P\(g)} )

Remark 1. We can verify that Fx|g : R — [0,1] is a distribution function for any nontrivial E € J.

Definition 1.2. Let g : IR — IR be a Borel measurable function. The conditional expectation of random
variable ¢(X) given a nontrivial event E is defined as

Eg(X) | E12 [ g(x)dFye(x).

xeR

Example 1.3. Consider two random variables X,Y defined on the same probability space (Q, F, P)
with the joint distribution Fx y(x,y) = P({X < x,Y < y}). For each y € R, we define event Ay (y) =
Y~!(—o0,y] € F such that Fy(y) = P(Ay(y)). Then, for each y € R such that P(Ay(y)) >0, we can
write the conditional distribution of X given the event Ay (y) as

Fxy(x,y)
Faw® = =gy

The conditional expectation of X given the event Ay (y) is defined as

o o dxFX,Y(x/y) _ 1
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Example 1.4. Consider a random variable X : () — R and a simple random variable Y : 3 — Y
defined on the same probability space. We observe that the conditional distribution of X given the
nontrivial event E, = Y~ {y} fory € Y is

P, (1) = P({X i(ﬁ;ylg—y}) _ P(;Sy) /tgxdtp({x <LY =y)).

Therefore, the conditional expectation of X given the event E; is

BB =X Y =] = | 3P (0) = gy, g L ox )=

Since E[X | E,] is a scalar, we can write E[X1g, | = E[E[X | E,]1g,].

Definition 1.5. The conditional expectation of X given an event subspace & C F is denoted E[X | €]
and is a random variable Z £ E[X | £] : O — R where

1. measurability: For each B € B(R), we have Z~!(B) € &, and

2_ orthogonality: for each event E € & we have E[X1g] = E[Z1f], and

3. integrability: E |Z| < oco.



Proposition 1.6. Conditional expectation is unique almost surely.

Proof. Consider a random variable X : () — R defined on a probability space (Q),F,P) and a sub event
space € C J. Let Z; and Z; be conditional expectations of X given €. It suffices to show that A, =
{lweO:Z1—2Zy>¢€} € & and Be £ {weQ:Zy—2Z1 > €} € & defined for each € > 0 has measure
P(A¢) = P(Be) = 0. From the definition of conditional expectation and linearity of expectation, we
can write

0<eP(Ae) < ]E[(Zl — Zz)]lAE] = ]E[X]lAe] — ]E[X]IAG] =0.
Similarly, we can show that P(B,) = 0, and the result follows. O

Remark 2. Any random variable Z : () — IR that satisfies the measurability, orthogonality, and inte-
grability, is the conditional expectation of X given the sub-event space € from the a.s. uniqueness of
conditional expectations.

Remark 3. Intuitively, we think of the event subspace € as describing the information we have. For each
A € &, we know whether or not A has occurred. The conditional expectation E[X|€] is the “best guess”
of the value of X given the information €.

Definition 1.7. Consider a random variable X : (3 — R and a random vector Y : (3 — R" defined on the
same probability space (Q),F, P). The conditional expectation of X given Y is defined as

E[X | Y] £ E[X|c(Y)].

Proposition 1.8. For two random variables X,Y : Q) — R defined on the same probability space (03, F,P), the
conditional expectation E[X | Y] is a function of Y.

Proof. We denote the conditional expectation E[X | Y] by a o(Y)-measurable random variable Z : () —
R. It suffices to show that for any y € RR, the conditional expectation Z(w) remains constant on the set of
outcomes w € Y1 {y}. First, we show that for any event A € o(Y), either Y1 {y} CAor ANY 1 {y} =
@. This follows from the fact that either y € A or y € A. Next, we suppose that there exists a y € R and
wy,wy € Yy} such that Z(w1) # Z(wy). It follows that there exists an event B= Z~1 {Z(w;)} € 0(Z)
such that wy € B and w, ¢ B. Since Z is 0(Y)-measurable, it follows that B € ¢(Z) C ¢(Y). This leads to
a contradiction. O

Proposition 1.9. Let X,Y be random variables on the probability space (Q),F,P) such that E |X|,E|Y| < oo.
Let G and 3 be sub-event spaces of F. Then
1. linearity: E{aX + BY | §] = aE[X | G] + BE[Y | §], a-s.
2. monotonicity: If X <Y a.s., then E[X | §] < E[Y | 9], a.s.
3. identity: If X is G-measurable and E |X| < oo, then X =E[X | §] a.s. In particular, c = E|c | §], for any
constant ¢ € R.
4. conditional Jensen’s inequality: If ¢ : R — R is convex and E |p(X)| < oo, then E[p(X) | §] >
Y(E[X|9]), as.
5. pulling out what’s known: If Y is G-measurable and E | XY| < oo, then E[XY | §] = YE[X | §], a.s.
6. L2-projection: If E |X|* < oo, then {* = E[X | §] minimizes E[(X — {)2] over all G-measurable random
variables { such that E|{|* < oo
7. tower property: If H C G, then E[E[X | §] | H] = E[X | H], as..
8. irrelevance of independent information: If H is independent of 0(G,0(X)) then E[X|o (G, H)] =E[X |
S, a.s. In particular, if X is independent of 3, then E[X | H] = E[X] a.s.

Proof. Let X,Y be random variables on the probability space (Q),F, P) such that E|X|,E|Y| < co. Let §
and I be event spaces such that §,7( C 7.
1. linearity: Let Z = aIE[X | §] + BE[Y | §], then since E[X | §], E[Y € §] are G-measurable, it follows
that their linear combination Z is also §-measurable. The integrability follows from the following
triangle inequality and the monotonicity of expectation

|Z] < la| [E[X | S]| + B[ B[Y | S]I-

Further, for any event F € G, from the linearity of expectation and definition of conditional expec-
tation, we have

E[Z1¢] = aE[E[X | §]1c] + BE[E[Y | §]1c] = E[(aX + BY)1g].



. monotonicity: Let € > 0 and define Ac = {[E[X | §] — E[Y | §] > €} € G. Then from the definition
of conditional expectation, we have

0 <E[(E[X | 9] ~ E[Y| §])1a,] = E[(X ~ Y)1,,] <O0.

Thus, we obtain that P(Ac) = 0 for all € > 0. Taking limit € | 0, we get 0 = lim. o P(A¢) =
P(lim¢ Ae) = P(Ap).

. identity: It follows from the definition that X satisfies all three conditions for conditional expec-
tation. The event space generated by any constant function is the trivial event space {©,Q} C §
for any event space. Hence, E[c | §] =c.

. conditional Jensen’s inequality: We will use the fact that a convex function can always be repre-
sented by the supremum of a family of affine functions. Accordingly, we will assume for a convex
function 1 : R — IR, we have linear functions ¢; : R — R and constants ¢; € R for all i € I such that
= sup;c (¢ +ci).

For each i € I, we have ¢;(E[X | §]) + ¢; = E[¢i(X) | §] + ¢; < E[¢p(X) | §] from the linearity and
monotonicity of conditional expectation. It follows that

p(B[X[8]) = S}EI?(%(]E[X |S]) +ci) <E[p(X) | §].

. pulling out what’s known: Let Y be §-measurable and [ |XY| < co. Since Y is given to be G-
measurable, conditional expectation [E[X | §] is §-measurable by definition, and product function
is Borel measurable, it follows that YIE[X | G is §-measurable.

It suffices to show that E[XY1s| = E[YE[X | §]1] for all events G € G and E|YE[X | §]| < oo,
when Y is a simple §-measurable random variable such that [E |XY| < co. It follows that, we
can write Y = Zye‘a y1g, for finite Y and E, Lyl {y} € G for all y € Y. From the definition of
conditional expectation and linearity, we obtain for any G € §

E[YE[X |S]1c] = ) yE[lcng, E[X | S]] = ) yE[X1cng,] = E[X ) ylcng,| = E[XY1g].
yeY yey yey

Conditional Jensen'’s inequality applied to convex function || : R — Ry, we get |E[X | §]| <E[|X] |
§]. Therefore,

E[|Y[[E[X | S]|] = Ey I E[E[X | ]| 1g,] < Ey ly|E[|X|1g,] = E|XY].
ye ye

. L2-projection: We define L2(g) = {¢ a § measurable random variable : E¢? < oo }. From the con-
ditional Jensen’s inequality applied to convex function ()?: R — R, we get that E(E[X | §])? <
E[X? | §]. Since X € L?, it follows that X? € L! and hence E[X | §] € L2. It follows that {* £ E[X |
G] € L?(G) from the definition of conditional expectation.

We first show that X — {* is uncorrelated with all { € L?(G). Towards this end, we let { € L?(G)
and observe that

E[(X —")¢] = E[¢X] - B[CE[X | §]] = E[¢X] — E[E[{X | §]] = 0.

The above equality follows from the linearity of expectation, the §-measurability of ¢, and the
definition of conditional expectation. Since {* € L?(G), we have ({ — {*) € L2(G). Therefore,
E[(X — ¢*)(Z — {*)] =0. For any € L?(G), we can write from the linearity of expectation

E(X-0)?=E(X-{" ) +EQC—{) -2E(X-7) (- 2E(X - ")~

. tower property: Measurability follows from the definition of conditional expectation, since E[X |
H] is H measurable. Integrability follows from the application of conditional Jensen's inequality
to convex function || : R — R to get |[E[X | H]| <E[|X|| K], which implies E |E[X | H]| < E |X| <
co. Orthogonality follows from the definition of conditional expectation, since forany He H{ C G,
we have

E[E[E[X | 9] |H]1h] = E[E[X | §]1x] = E[X1y] = B[E[X | H]14].
. irrelevance of independent information: Measurability follows from the definition of conditional
expectation and the definition of (5, H). Since E[X | §] is §-measurable, it is ¢ (G, H) measurable.
Integrability follows from the conditional Jensen’s inequality applied to convex function || : R —
Ry toget [E[X | §]| <E[|X| |G|, which implies that E|E[X | §]| < E|X]| < co.
Orthogonality follows from the fact that it suffices to show for events A = GN H € ¢ (3, H) where
G € Gand H € H. In this case,

E[E[X | S]lgna] = E[E[X | §]1cly] = E[E[X | §]1G]E[1x] = E[X1G]E[lx] = E[X1cnH].



Example 1.10 (Conditioning on simple random variables). Let X and Y be random variables de-
fined on the probability space (Q,F, P), where Y =}, cy y1g, is simple with finite Y, E, 2y-Hy}e
F for all y € Y are mutually disjoint, and py, = P(E,) > 0 for all y € Y. Then, we observe that

E[X[Y] = ) E[X|E,]lE, as.
yeY

To show this, we will use the almost sure uniqueness of conditional expectation that satisfies three
properties in the definition. For measurability, we observe that o(Y) = (E, : y € Y), and RHS is a
simple o(Y)-measurable random variable. For integrability, we observe that

E|) E[X|E,lE,

yeY

< ¥ [EIX | Y]|P(E,).
yeY

Thus, integrability follows from the finiteness of |IE[X | E,]|. For orthogonality, we observe that any
G € 0(Y) = UyerEy for some finite subset F C Y. Further, we observe that E[X1g | = E[X | E,|P(Ey).
Therefore, we have

E[) ) E[X|Elg,1g] = E[)  E[X|E:]1E,] = E[X1g].
zeFyeY z€F

Example 1.11 (Conditioning on simple random variables). Consider two random variables X,Y
defined on the same probability space (), F,P), where Y is a simple random variable such that
Y C R is finite alphabet, E, £ Y1 ({y}) € 0(Y) C F, and p, £ P(E,) > 0. Thus, we can write

Y= Z y]lEy.
yeY

The collection (E, € F:y € Y) forms a finite partition of the outcome space () and generates (Y) =
{UyerEy € F: F C Y}. For an event space & C F, we claim

E[X |o(£,Y)] = Y E[X| 0(&,Ey)]1g, as.
yeyY

We will show this by uniqueness of conditional expectation that satisfies the following three prop-
erties. First, we verify that RHS is ¢(€,Y) measurable, which follows from the definition since
E[X|o(EEy)] € 0(€,Ey) Co(E,Y). Second, it follows from the triangular and conditional Jensen’s
inequality, that

E|Y E[X | o(e E)ig, | < ¥ E[E]X| 15, | o(2 )] <E[X].
yeY yeY

It suffices to show that for any A € € and z € Y, we have E[¥, cy E[X | 0(€,Ey)]1g, 141 ] =
E[X141g, ]. To this end, we observe that LHS of above equation is equal to

E[E[XTnE, | 0(&, E2)]] = E[XTnE,]-
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