
Lecture-23: Stability of dynamic systems

1 Dynamic system

Definition 1.1 (Autonomous dynamic system). For a continuous map f : Rn → Rn, we consider an au-
tonomous dynamic system x : R+ → Rn defined by the following differential equation for all t ∈ R+,

ẋ(t) =
d
dt

x(t) = f (x(t)).

The time variable t is omitted when no confusion is caused. We assume that x(0) is given and f satisfies
other appropriate conditions to ensure that the differential equation has a unique solution

x(t) = x(0) +
∫ t

0
f (x(s))ds, for t ∈ R+.

Definition 1.2 (Equilibrium point). A point xe ∈ Rn is called an equilibrium point of autonomous dynamic
system x : R+ → Rn defined in Definition 1.1 if f (xe) = 0. The set of equilibrium points is denoted by
Ae ≜ {x ∈ Rn : f (x) = 0}. We assume that xe is the unique equilibrium point of this autonomous dynamic
system.

Lemma 1.3. Consider an autonomous dynamic system x : R+ → Rn defined in Definition 1.1. If x(t) = xe for some
t ∈ R+, then x(s) = xe for all s > t.

Proof. Let x(t) = xe for some t ∈ R+ and we define u ≜ inf{s > t : x(s) ̸= xe}, then u is a point of disconti-
nuity whereas x is continuous everywhere in t. This implies that u = ∞, and we are done.

Corollary 1.4. Consider the autonomous dynamic system x : R+ → Rn defined in Definition 1.1. If x(t) does not
converge to the equilibrium point xe for large t, then x(t) ̸= xe for any t ∈ R+.

Proof. If x(t) = xe for some t ∈ R+, then from Lemma 1.3 we have x(s) = xe for all s ⩾ t. This implies that
limt→∞ x(t) = xe and contradicts the assumption that x(t) does not converge to xe.

Definition 1.5 (Potential function). A map V : Rn → R is called a potential function, if it is differentiable
and satisfies the radial unboundedness property lim∥x∥→∞ V(x) = ∞.

Lemma 1.6. Let c ∈ R and V : Rn → R a potential function, then the set Ac ≜ {x ∈ Rn : V(x)⩽ c} is bounded.

Proof. If set Ac is unbounded, then we can find a sequence y ∈ AN
c such that limm→∞ ∥ym∥ = ∞. It follows

that V(ym)⩽ c for all m ∈ N, and hence limm→∞ V(ym)⩽ c. However this contradicts the radial unbound-
edness property of potential function V.

Lemma 1.7. For any potential function V : Rn → R and an autonomous dynamic system x : R+ → Rn defined in
Definition 1.1, the time derivative of potential function is denoted by V̇(x)≜ d

dt V(x(t)), and given by

V̇(x) = ⟨∇V(x), ẋ⟩ = ⟨∇V(x), f (x)⟩ .

Proof. It follows from substituting the definition of autonomous dynamic system in the time derivative of
potential function, and applying chain rule.

Theorem 1.8 (Lyapunov boundedness). Consider an autonomous dynamic system x defined in Definition 1.1
and an associated potential function V : Rn → R defined in Definition 1.5. If V̇(x) ⩽ 0 for all x, then there exists a
constant B > 0 such that ∥x(t)∥⩽ B for all times t.
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Proof. From Lemma (1.6), we get that Ac ≜ {x ∈ Rn : V(x)⩽ c} is a bounded set for any finite c ∈ R. Since
V̇(x) < 0 for all x, we get that at any time t ∈ R+, we have

V(x(t)) = V(x(0)) +
∫ t

0
V̇(x(s))ds ⩽ V(x(0)).

Taking c ≜V(x(0)), we get that x(t) ∈ Ac for all t ∈ R+. The result follows by taking B ≜ sup{∥x∥ : x ∈ Ac}.

Definition 1.9 (Globally asymptotically stable). An equilibrium point xe ∈ Ae is said to be a globally asymp-
totically stable if limt→∞ x(t) = xe for any x(0) ∈ Rn.

Example 1.10 (Not globally asymptotically stable). Consider an autonomous dynamic system x :
R+ → R defined as ẋ = ex − 1. We observe that it has a unique rest point xe = 0. However, if x(0) > 0
then we observe that limt→∞ x(t) = ∞ and if x(0) < 0 then limt→∞ x(t) = −∞.

Theorem 1.11 (Lyapunov global asymptotic stability). Consider an autonomous dynamic system x defined in
Definition 1.1 and an associated potential function V : Rn → R defined in Definition 1.5 that satisfies the following
properties.
(a) V is differentiable with continuous first derivatives,
(b) V(x)⩾ 0 for all x ∈ Rn with equality iff x = xe, and
(c) V̇(x)⩽ 0 for any x ∈ Rn with equality iff x = xe.
Then the equilibrium point xe is globally asymptotically stable.

Proof. We prove this theorem by contradiction, and assume that x(t) doesn’t converge to xe for large
t. Therefore, x(t) ̸= xe for any t ∈ R+ from Corollary 1.4. Consequently, V̇(x(t)) < 0 and V(x(t)) > 0
for all times t ∈ R+, and hence V(x(t)) is decreasing in time t and lower bounded by 0. Hence, ϵ ≜
limt→∞ V(x(t)) ⩾ 0 exists. Since V and x are continuous, we get that limt→∞ V(x(t)) = V(limt→∞ x(t)) ̸=
V(xe) = 0. Therefore ϵ > 0, and we define the set

C ≜ {x ∈ Rn : ϵ ⩽ V(x)⩽ V(x(0))} = V−1[ϵ,V(x(0))] ⊆ V−1(−∞,V(x(0))].

We observe that x(t) ∈ C for all t ∈ R+. From Lemma 1.6 for potential function, the set V−1(−∞,V(x(0))]
is bounded and hence so is C. Further, C is closed since the map x 7→ V(x) is continuous and [ϵ,V(x(0))] is
closed. Since C is closed and bounded, it is a compact set and we define

a ≜ sup
{

V̇(x) : x ∈ C
}
= sup V̇−1(C)⩽ 0.

Since C is compact and the map x 7→ V̇(x) is continuous, it follows that V̇−1(C) is compact and sup V̇−1(C) =
max V̇−1(C) is finite and belongs to V̇−1(C). Since xe /∈ C and hence 0 /∈ V̇−1(C), it follows that a < 0 is finite.
Hence, we can write

V(x(t)) = V(x(0)) +
∫ t

0
V̇(x(s))ds ⩽ V(x(0)) + at.

This implies that V(x(t)) = 0 and x(t) = xe for all t ⩾− 1
a V(x(0)). This contradicts the assumption that x(t)

does not converge to xe.

Remark 1. The Lyapunov global asymptotic stability theorem requires that V̇(x) ̸= 0 for any x ̸= xe. In
the case V̇(x) = 0 for some x ̸= xe, global asymptotic stability can be studied using Lasalle’s invariance
principle.

Theorem 1.12 (Lasalle’s invariance principle). Consider an autonomous dynamic system x defined in Defi-
nition 1.1 and an associated potential function V : Rn → R defined in Definition 1.5 that satisfies the following
properties.
(a) V is differentiable with continuous first derivatives,
(b) V(x)⩾ 0 for all x ∈ Rn with equality iff x = xe,
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(c) V̇(x)⩽ 0 for all x ∈ Rn, and
(d) the only trajectory x(t) that satisfies ẋ(t) = f (x(t)) and V̇(x(t)) = 0 for all t ∈ R+, is x(t) = xe for all t ∈ R+.
Then the equilibrium point xe is globally asymptotically stable.

Proof.
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