Lecture-23: Stability of dynamic systems

1 Dynamic system

Definition 1.1 (Autonomous dynamic system). For a continuous map f : R” — R”, we consider an au-
tonomous dynamic system x : R1 — R" defined by the following differential equation for all t € R,

(1) = Sx(t) = f(x(1))

The time variable t is omitted when no confusion is caused. We assume that x(0) is given and f satisfies
other appropriate conditions to ensure that the differential equation has a unique solution

=.

*() = x(0) + /Otf(x(s))ds, fort € Ry

Definition 1.2 (Equilibrium point). A point x. € R" is called an equilibrium point of autonomous dynamic
system x : Ry — R" defined in Definition [1.1]if f(x,) = 0. The set of equilibrium points is denoted by
A2 {x €R": f(x) = 0}. We assume that x, is the unique equilibrium point of this autonomous dynamic
system.

Lemma 1.3. Consider an autonomous dynamic system x : Ry — R" defined in Definition[1.1] If x(t) = x. for some
t € Ry, then x(s) = x, forall s > t.

Proof. Let x(t) = x, for some t € R and we define u = inf {s > t: x(s) # x,}, then u is a point of disconti-
nuity whereas x is continuous everywhere in t. This implies that # = co, and we are done. O

Corollary 1.4. Consider the autonomous dynamic system x : Ry — R" defined in Definition If x(t) does not
converge to the equilibrium point x. for large t, then x(t) # x, for any t € Ry.

Proof. 1f x(t) = x, for some t € Ry, then from Lemma[l.3|we have x(s) = x, for all s > t. This implies that
lim¢_,0 x(#) = x, and contradicts the assumption that x () does not converge to x,. O

Definition 1.5 (Potential function). A map V : R" — R is called a potential function, if it is differentiable
and satisfies the radial unboundedness property lim | ;e V(x) = oo.

Lemma 1.6. Let c € Rand V : R" — R a potential function, then the set Ac = {x € R": V(x) < c} is bounded.

Proof. If set A, is unbounded, then we can find a sequence y € AN such that limy, e ||ym | = 0. It follows
that V(ym) < ¢ for all m € N, and hence limy, s« V (y) < c. However this contradicts the radial unbound-
edness property of potential function V. O

Lemma 1.7. For any potential function V : R" — R and an autonomous dynamic system x : Ry — R" defined in
Definition 1.1} the time derivative of potential function is denoted by V (x) £ LV (x(t)), and given by

V(x) =(VV(x),%) = (VV(x), f(x)).

Proof. It follows from substituting the definition of autonomous dynamic system in the time derivative of
potential function, and applying chain rule. O

Theorem 1.8 (Lyapunov boundedness). Consider an autonomous dynamic system x defined in Definition
and an associated potential function V : IR" — R defined in Definition If V(x) <0 for all x, then there exists a
constant B > 0 such that ||x(t)|| < B for all times t.



Proof. From Lemma (T.6), we get that A = {x € R": V(x) < c} is a bounded set for any finite c € R. Since
V(x) < 0 for all x, we get that at any time t € R, we have

V(x(t)) = V(x(0)) + /OtV(X(S))dS < V(x(0)).

Taking c = V(x(0)), we get that x(t) € A, for all t € R.. The result follows by taking B = sup {||x|| : x € A.}.
O

Definition 1.9 (Globally asymptotically stable). An equilibrium point x, € A, is said to be a globally asymp-
totically stable if lim;_, x(t) = x, for any x(0) € R".

Example 1.10 (Not globally asymptotically stable). Consider an autonomous dynamic system x :
R; — R defined as x = ¢* — 1. We observe that it has a unique rest point x, = 0. However, if x(0) > 0
then we observe that lim;_, x(t) = oo and if x(0) < 0 then lim;_, x(f) = —oo.

Theorem 1.11 (Lyapunov global asymptotic stability). Consider an autonomous dynamic system x defined in
Definition [1.1|and an associated potential function V : R" — R defined in Definition[1.5]that satisfies the following
properties.

(a) V is differentiable with continuous first derivatives,

(b) V(x) =0 forall x € R" with equality iff x = x,, and

(c) V(x) <0 forany x € R" with equality iff x = x,.

Then the equilibrium point x, is globally asymptotically stable.

Proof. We prove this theorem by contradiction, and assume that x(t) doesn’t converge to x, for large
t. Therefore, x(t) # x. for any t € R, from Corollary Consequently, V(x(t)) <0 and V(x(t)) >0
for all times t € Ry, and hence V(x(t)) is decreasing in time ¢ and lower bounded by 0. Hence, € =
lim¢ 00 V(x(t)) > 0 exists. Since V and x are continuous, we get that lim;_,e V(x(t)) = V(lim¢—e0 x(t)) #
V(x¢) = 0. Therefore € > 0, and we define the set

C2{xeR":e<V(x) <V(x(0)} = Ve, V(x(0))] € V"L (—o0, V(x(0))].

We observe that x(t) € C for all t € R.. From Lemma |1.6{for potential function, the set V~1(—o0,V (x(0))
is bounded and hence so is C. Further, C is closed since the map x — V(x) is continuous and [e, V(x(0))] i
closed. Since C is closed and bounded, it is a compact set and we define

]

aZsup{V(x):xeC}=supV '(C) <0.

Since C is compact and the map x V(x) is continuous, it follows that Vfl (C) is compactand sup V~1(C) =
max V~1(C) is finite and belongs to V' (C). Since x, ¢ C and hence 0 ¢ V~1(C), it follows that a < 0 is finite.
Hence, we can write

V(x(t)) = V(x(0)) + /Ot V(x(s))ds < V(x(0)) + at.

This implies that V(x(t)) = 0and x(t) = x, for all > —1V/(x(0)). This contradicts the assumption that x(¢)
does not converge to x.. O

Remark 1. The Lyapunov global asymptotic stability theorem requires that V(x) # 0 for any x # x.. In
the case V(x) = 0 for some x # x,, global asymptotic stability can be studied using Lasalle’s invariance
principle.

Theorem 1.12 (Lasalle’s invariance principle). Consider an autonomous dynamic system x defined in Defi-
nition and an associated potential function V : R" — R defined in Definition that satisfies the following
properties.

(a) V is differentiable with continuous first derivatives,

(b) V(x) =0 forall x € R" with equality iff x = x.,



(c) V(x) <0 foral x € R", and
(d) the only trajectory x(t) that satisfies %(t) = f(x(t)) and V(x(t)) =0 forall t € Ry, is x(t) = x, forall t € R.

Then the equilibrium point x, is globally asymptotically stable.
O

Proof.
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