
Lecture-24: Primal algorithm

1 Distributed algorithms: primal solution

Definition 1.1. Consider the set of sources S, the set of links L, fixed routing matrix R ∈ {0,1}L×S, and link
capacity vector c ∈ RL

+ . The set of source rate vectors x ∈ RS
+ that satisfy the the link capacity constraint, is

written as
D ≜

{
x ∈ RS

+ : y ≜ Rx ⩽ c
}

.

Assuming that each source r ∈ S has a concave increasing and continuously differentiable utility function
Ur : R+ → R+, the sum network utility maximizing resource allocation problem is formulated as the fol-
lowing convex optimization problem

x∗ ≜ argmax

{
∑
r∈S

Ur(xr) : x ∈ D
}

.

Remark 1. The techniques used to solve the optimization problem assume that we have complete knowledge
of the topology and routes. Clearly this is infeasible in a giant network such as the Internet. We will
study distributed algorithms which only require limited information exchange among the sources and the
network for implementation. We will first study the primal solution, where instead of imposing a strict
capacity constraint on each link, we append a cost to the sum network utility.

Definition 1.2 (Cost function). For each link ℓ ∈ L, a map Bℓ : R+ → R+ is called a cost function if it is
continuously differentiable and convex with Bℓ(0) = 0.

Definition 1.3 (Congestion price function). The continuous derivative of cost function Bℓ is denoted by
fℓ : R+ → R+, defined as fℓ(y)≜ B′

ℓ(y) for all y ∈ R+, and called congestion price function or simply the price
function at link ℓ, since it associates a price pℓ ≜ fℓ(yℓ) with the level of congestion yℓ on link ℓ.

Lemma 1.4. A map Bℓ : R+ → R+ is a cost function iff the associate price function fℓ : R+ → R+ is increasing and

Bℓ(yℓ) =
∫ yℓ

0
fℓ(u)du. (1)

Proof. Let Bℓ be a continuously differentiable convex function. Then we denote its continuous derivative as
price function fℓ ≜ B′

ℓ to write (1). Conversely, if fℓ is continuous then it follows from (1) that Bℓ(0) = 0 and
is continuously differentiable.

Next, we let λ ∈ (0,1] and x < y ∈ R+. Using (1) and change of variables, we can write

Bℓ(λ̄x + λy)− Bℓ(x) = λ
∫ (y−x)

0
fℓ(x + λu)du, λ

∫ y−x

0
fℓ(x + u)du = λ(Bℓ(y)− Bℓ(x)).

We observe that Bℓ(λ̄x + λy)− Bℓ(x) ⩽ λ(Bℓ(y)− Bℓ(x)) if and only if fℓ(x + λu) ⩽ fℓ(x + u) for all u ∈
[0,y − x]. Since the choice of x,y,λ was arbitrary, it follows that Bℓ is convex iff fℓ is increasing.

Definition 1.5 (Modified network utility). Let x ∈ RS
+ be rate vector of all sources, R ∈ {0,1}L×S be the

routing matrix for sources across links, and load vector y ≜ Rx ∈ RL
+ , and Bℓ : R+ → R+ is the map that

determines the cost or price of sending data on link ℓ ∈ L. We can write the modified network utility function
W : RS

+ → R defined for any allocation x ∈ RS
+ as

W(x)≜ ∑
r∈S

Ur(xr)− ∑
ℓ∈L

Bℓ(yℓ). (2)

1

Remark 2. Modified network utility W(x) represents a tradeoff. Increasing the data rates x results in in-
creased utility, but there is a price to be paid for the increased data rates at the links.

Corollary 1.6. The modified network utility function W in (2) is concave in allocation x ∈ RS
+.

Proof. From the convexity of Bℓ and the fact that sum of convex functions is convex, we get the result.

Remark 3. If Bℓ is interpreted as a barrier function associated with link ℓ, it should be chosen so that
limy→cℓ Bℓ(y) = ∞. Thus, for any x ∈ RS

+ that leads to finite W(x) will have Rx ⩽ c.

Remark 4. If Bℓ is interpreted as a penalty function which penalizes the arrival rate for exceeding the link
capacity, rates slightly larger than the link capacity may be allowable, but this will result in packet losses
over the link. One can also interpret cℓ as a virtual capacity of the link which is smaller than the real capacity,
in which case, even if the arrival rate exceeds cℓ, one may still be operating within the link capacity.

Remark 5. While it is not apparent in the deterministic formulation here, later in the book we will see that,
even when the arrival rate on a link is less than its capacity, due to randomness in the arrival process,
packets in the network will experience delay or packet loss. The function Bℓ may thus be used to represent
average delay, packet loss rate, etc.

1.1 Primal algorithm

Clearly, it is not practically feasible to solve (3) offline and implement the resulting data rates in the net-
work since, as mentioned earlier, the topology of the network is unknown. Therefore, we will develop a
decentralized algorithm under which each user can collect limited information from the network and solve
for its own optimal data rate.

Remark 6. A natural candidate for such an algorithm is the so-called gradient ascent algorithm from opti-
mization theory. The basic idea behind the gradient ascent algorithm is intuitive, especially if the concave
function is a function of one variable: since a concave function has a derivative which is a decreasing func-
tion and the optimal solution is obtained at the point where the derivative is zero, it makes sense to seek a
solution by moving in the direction of the derivative. More generally, for a function of many variables, the
gradient ascent algorithm suggests moving in the direction of the gradient.

Definition 1.7. We will assume that utility functions (Ur : r ∈ S) and price functions (fℓ : ℓ∈L) are such that
the maximization of (2) results in a solution with allocation xr > 0 for all sources r ∈ S. Then, the first-order
condition for optimality states that the maximizer of (2) must satisfy for all r ∈ S,

∂

∂xr
W(x) = U′

r(xr)− ∑
l∈L

(∂

∂xr
yℓ
)

B′
ℓ(yℓ) = U′

r(xr)− ∑
l∈L

Rℓ,r fℓ(yℓ) = 0. (3)

Definition 1.8. We will consider an algorithm where the source rate vector and link price vector evolve
over time, and at time t are denoted by x(t) ∈ RS

+ and p(t) ∈ RL
+ respectively. Consequently, the load at

each link ℓ ∈ L and route price aggregated over all links traversed by a route also evolve over time, and at
time t are denoted by y(t) ∈ RL

+ and q(t) ∈ RS
+ respectively. Recall that

y(t) = Rx(t), pℓ(t)≜ fℓ(yℓ(t)), ℓ ∈ L, q(t) = R⊤p(t).

Definition 1.9 (Primal algorithm). Consider the primal algorithm where the evolution of source rate alloca-
tion x : R+ → RS

+ is an autonomous dynamic system governed by ẋ = g(x) for a map g : RS → RS such
that for each r ∈ S

gr(x)≜ kr(xr)
∂

∂xr
W(x) = kr(xr)

(
U′

r(xr)− ∑
l∈L

Rℓ,r fℓ(yℓ)
)
= kr(xr)(U′

r(xr)− qr). (4)

The right-hand side of the above differential equation is simply the derivative of (2) with respect to xr, while
kr(xr) is simply a step-size parameter which determines how far one moves in the direction of the gradient.

Remark 7. The scaling function kr : R+ → R+ must be chosen such that the equilibrium of the differential
equation is the same as the optimal solution to the resource allocation problem. For example, if kr(xr) > 0,
setting ẋr = 0 for all r ∈ S yields the same set of equations as (3).

2

Remark 8. Algorithm (4) is called a primal algorithm since it arises from the primal formulation of the
utility maximization problem. Note that the primal algorithm is a congestion control algorithm for the
following reasons. When the route price qr = ∑ℓ∈L Rℓ,r fℓ(yℓ) is large, the congestion controller decreases
its transmission rate. Further, if rate xr is large then U′(xr) is small, since Ur(xr) is concave. Thus the rate
of increase is small, and the network can be viewed as a control system with the network providing the
feedback to allow the sources to adjust their rates.

Definition 1.10. For the strictly concave modified network utility function W, we denote its unique max-
imizer by x̂. Further, we define a non-negative function V : RS → R+ as V(x) ≜ W(x̂) − W(x) for any
x ∈ RS

+.

Lemma 1.11. Function V defined in Definition 1.10 is non-negative with unique zero at x = x̂.

Proof. Since W is strictly concave, it has a unique maximizer denoted by x̂ and W(x̂)⩾ W(x) for all x ∈ RS
+

with equality iff x = x̂.

Theorem 1.12 (Stability of primal algorithm). Consider a network in which all sources adjust their data rates
according to the primal control algorithm (4), and consider the function V : RS → R+ defined in Definition 1.10.
Assume that the functions Ur,kr and fℓ are such that
(a) utility function Ur : R+ → R+ is concave increasing and continuously differentiable for each source r ∈ S,
(b) scaling function kr : R+ → R+ is continuous for each source r ∈ S,
(c) function V : RS

+ → R is radially unbounded,
(d) optimal allocation x̂r > 0 for each source r ∈ S, and
(e) the equilibrium point of (4) is the maximizer of (2).
Then, the controller in (4) is globally asymptotically stable.

Proof. Since U′
r exists and is continuous, fℓ is continuous and V is radially unbounded, we observe that V

is a potential function. Differentiating V with respect to time t, we get

V̇(x(t)) = ⟨∇V(x), ẋ⟩ = − ∑
r∈S

∂

∂xr
W(xr)gr(x) = − ∑

r∈S
kr(xr)(U′

r(xr)− qr)
2.

It follows that V̇(x(t)) ⩽ 0 for all x ∈ RS with equality iff x = x̂. Further, V(x) ⩾ 0 for all x ∈ RS with
equality iff x = x̂ from Lemma 1.11. Thus, all the conditions of the Lyapunov theorem are satisfied, and so
the system state x(t) will converge to x̂, starting from any initial condition.

Example 1.13. In the proof of Theorem 1.12, we have assumed that the utility, price, and scaling func-
tions are such that modified network utility W satisfies the conditions required to apply the Lya-
punov stability theorem. It is easy to find functions that satisfy these properties. For example, if
Ur(xr) = wr ln xr and kr(xr) = xr, the primal congestion control algorithm for source r becomes

ẋr = kr(xr)
∂

∂xr
W(x) = xr

(wr

xr
− ∑

ℓ∈L
Rℓ,r fℓ(yℓ)

)
= wr − xr ∑

ℓ∈L
Rℓ,r fℓ(yℓ),

and thus the unique equilibrium point can be obtained by solving wr
xr

= ∑ℓ∈L Rℓ,r fℓ(yℓ). Further,
if price function fℓ is such that Bℓ is a polynomial function, then lim∥x∥→∞ W(x) = −∞, and thus
lim∥x∥→∞ V(x) = ∞.

1.2 Congestion feedback and distributed implementation

For a congestion control algorithm to be useful in practice, it should be amenable to decentralized imple-
mentation. We now present one possible manner in which the primal algorithm could be implemented in
a distributed fashion.

3

1.2.1 Setting price field

We first note that each source r ∈ S simply needs to know qr ≜ ∑ℓ∈L Rℓ,r pℓ the sum of the link prices on
its route to adjust its data rate xr = (U′

r)
−1(qr) as suggested by the algorithm. Suppose that every packet

has a field (a certain number of bits) set aside in its header to collect the price of its route. When the source
releases a packet into the network, the price field can be set to zero. Then, each link on the route can add
its price to the price field so that, by the time the packet reaches its destination, the price field will contain
the route price. This information can then be fed back to the source to implement the congestion control
algorithm. A noteworthy feature of the congestion control algorithm is that the link prices p depend only
on the total arrival rate yℓ = ∑r∈S Rℓ,rxr to the link ℓ, and not on the individual arrival rates (xr : r ∈ Sℓ) of
each source Sℓ ≜

{
r ∈ S : Rℓ,r = 1

}
using the link. Thus, each link ℓ has only to keep track of the total arrival

rate yℓ to compute the link price pℓ. If the algorithm required each link to keep track of individual source
arrival rates, it would be infeasible to implement since the number of sources using high-capacity links
could be prohibitively large. Thus, the primal algorithm is both amenable to a distributed implementation
and has low overhead requirements.

1.2.2 Setting single bit congestion field

Packet headers in the Internet are already crowded with a lot of other information, such as source and
destination addresses to facilitate routing, so Internet practitioners do not like to add another field in the
packet header to collect congestion information. In view of this, the overhead required to collect congestion
information can be further reduced to accommodate practical realities. Consider the extreme case where
there is only one bit available in the packet header to collect congestion information. Suppose that each
packet is marked independently with probability 1 − e−pℓ when the packet passes through link ℓ. We
denote this congestion indicator by ξn,ℓ for packet n for link ℓ. Marking simply means that a bit in the
packet header is flipped from a 0 to a 1 to indicate congestion. Then, a packet n is marked along a route r
indicated by

ξn,r ≜ 1 − ∏
ℓ∈Lr

(1 − ξn,ℓ), where Lr ≜
{
ℓ ∈ L : Rℓ,r = 1

}
.

The marking probability of a packet n along route r is given by

Eξn,r = 1 − ∏
ℓ∈Lr

e−pℓ = 1 − e−∑ℓ∈Lr pℓ = 1 − e−∑ℓ∈L Rℓ,r pℓ = 1 − e−qr .

If the acknowledgement for each packet contains one bit of information to indicate whether a packet is
marked or not, then, by computing the fraction of marked packets, the source can estimate the route price
qr = ∑ℓ∈L Rℓ,r pℓ. The assumption here is that source rates x change slowly so that each link price pℓ remains
roughly constant over many packets. Thus, one can estimate pℓ approximately.

1.2.3 Estimating congestion via packet drops

While marking, as mentioned above, has been widely studied in the literature, the pre-dominant mech-
anism used for congestion feedback in the Internet today is through packet drops. Buffers used to store
packets at a link have finite capacity, and therefore a packet that arrives at a link when its buffer is full is
dropped immediately. If a packet is dropped, the destination of the packet will not receive it. So, if the
destination then provides feedback to the source that a packet was not received, this provides an indication
of congestion. Clearly, such a scheme does not require even a single bit in the packet header to collect con-
gestion information. However, strictly speaking, this type of congestion feedback cannot be modeled using
our framework since we assume that a source’s data rate is seen by all links on the route, whereas, if packet
dropping is allowed, some packets will not reach all links on a source’s route.

However, if we assume that the packet loss rate at each link is small, we can approximate the rate at
which a link receives a source’s packet by the rate at which the source is transmitting packets. Further, the
end-to-end drop probability on a route can be approximated by the sum of the drop probabilities on the
links along the route if the drop probability at each link is small. That is, let pℓ be the drop probability of
packets at link ℓ, then the drop probability along the route r is

qr = 1 − ∏
ℓ∈Lr

(1 − pℓ) ≈ ∑
ℓ∈Lr

pℓ = ∑
ℓ∈L

Rℓ,r pℓ.

4

Thus, the optimization formulation approximates reality under these assumptions. To complete the con-
nection to the optimization framework, we have to specify the price function at each link. A crude approx-
imation to the drop probability also known as packet loss rate at link ℓ ∈ L is

pℓ ≜
((yℓ − cℓ)

yℓ

)
+

,

which is non-zero only if yℓ = ∑r∈S Rℓ,rxr is larger than cℓ. This approximate formula for the packet loss
rate can serve as the price function for each link.

5

	Distributed algorithms: primal solution
	Primal algorithm
	Congestion feedback and distributed implementation
	Setting price field
	Setting single bit congestion field
	Estimating congestion via packet drops

