Lecture-02: Embedded Markov Chain and Sojourn Times

1 State Evolution

For a homogeneous Markov process X : Q — DC]E on countable state space X C R with sample paths
that are right continuous with left limits (rcll), we wish to characterize the transition kernel P : Ry —
[0, 1]X*% where Ppy(t) £ P({Xse =y} | {Xs=a}) for all s,t € Ry. To this end, we define the
sojourn time in any state, the jump times, and the jump transition probabilities.

1.1 Transition instants and counting process

Definition 1.1. Let S; £ 0. The nth jump time of a right continuous countable state stochastic
process X : Q — X®+ is defined inductively as S,, £ inf {t > Sn_1: X # XSnfl} .

Definition 1.2. The counting process associated with jump times sequence S : 2 — Rli is denoted by

N:Q— ZE*, where the number of jumps in duration (0,¢] is denoted by Ny £ >« Iys, <¢}-

Lemma 1.3. Each term of the jump time sequence S : Q — RI}I is adapted to the natural filtration F,
of the process X : Q — XR+.

Proof. Since X is rcll, it is progressively measurable, and hence the event {5, <t} € F;. O

Definition 1.4 (Age of a state). For the counting process N associated with the CTMC X, we can

define age process A : Q — RE* where the age of last transition at time ¢ is denoted by A; = ¢t — Sy, for
all times ¢ € R;. For the CTMC X, we can write the age of last transition at time t € Ry as

At e inf{s >0: ths # Xt}
Definition 1.5 (Excess time in a state). For the counting process N associated with the CTMC X,

we can define the excess time process Y :  — RE* where Y; = Sy, 41 —t is the time until next transition
at time t. We can write the excess time at time ¢t € R for the CTMC X as

Y; 2inf{s > 0: X1 # X¢}.

Remark 1. For a homogeneous CTMC X, the distribution of excess time Y; conditioned on the current
state X¢, doesn’t depend on time ¢. Hence, we can define the following conditional complementary
distribution of excess time as Fj,(u) 2 P{Y; > u} | {X; = z}) = P, {Yy > u}.

Lemma 1.6. For a homogeneous CTMC X, there exists a positive sequence v € Rz, such that
Fulw) & P(Y, > u} | {X, = 2}) = ™, s €.

Proof. We fix a state * € X, and observe that the function F, : R, — [0, 1] is non-negative, non-
increasing, and right-continuous. Using the Markov property and the time-homogeneity, we can show
that F), satisfies the semigroup property. In particular,

Fp(u+v) = P{Y: > u+ v} [{X; = 2}) = PUY: > u, Yiew > v} [{Xy = 2}) = Fo(u) Fu(v).

The only continuous function F, : Ry — [0, 1] that satisfies the semigroup property is an exponential
function with a negative exponent. O

Example 1.7 (Poisson process). Consider the counting process N :  — ZE* for a Poisson point
process with homogeneous rate A. Using the stationary independent increment property, we have for all
u=0

Fi(u) = P({Y; > u} | {N; = i}) = P({Nysu = i} | {N; = i}) = P {Nypyu — Ny = 0} = P{¥; > u} = e ™.



1.2 Sojourn time in a state

Definition 1.8. The jump process Z : Q — XV is a discrete time process, derived from the continuous
time stochastic process X :  — X®+ by sampling X at the jump times S : Q — le_. The state of the

process X at the nth jump time S,, is the nth state Z,, £ Xg, of the jump process Z.
Definition 1.9. The sojourn time in the state Z,,_; for the process X is defined as T, 26, —S,_ 1.

Remark 2. From the definition of jump instants, it follows that the history until time ¢ is
Tt = (S0, (20, T1), (Z1, T2), - - -, (ZN,, At))-
We can verify that Fs, = (S0, (Zo,T1),- -, (Zn-1,Tn), Zn).

Lemma 1.10. For a homogeneous CTMC, each sojourn time T,, : 2 — Ry is a continuous memoryless
random wvariable, and the sequence of sojourn times (Tj : j > n) is independent of the past Fg
conditioned on Z,_1.

n—1

Proof. We observe that the sojourn time 7;, equals the excess time Yg, ,, where the process remains in
state Z,_1 = Xg,_, in the duration S,,_1 +[0,T,). Using the strong Markov property, we can write the
conditional complementary distribution of T}, given any historical event H € Fg__, and u > 0 as

P{{T, > u} [{Zn—1 =2} NH) = P({Ys,_, >u} |{Xs,_, =} NH) = exp(—uvy) = Fy(u).
O

Corollary 1.11. If X,, = z, then the holding time T, 1 is an exponential random variable with rate v,.

Definition 1.12. For a homogeneous CTMC X, the exponential rate for the random holding time in a
state x is called the transition rate out of state x denoted by v,.

Definition 1.13. For a CTMC X, a state x € X is called instantaneous if v, = oo, stable if
v, € (0,00), and absorbing if v, = 0.

Remark 3. Transition rate out of a state z is the inverse of mean holding time in this state z, i.e.
Uy = ﬁ. Therefore, the mean holding time E,7} in state x is co in an absorbing state, zero in an
instantaneous state, and almost surely finite and non-zero in a stable state.

Definition 1.14. A homogeneous CTMC with no instantaneous states is called a pure jump CTMC.

Definition 1.15. A pure jump CTMC with
(i) all stable states and inf,cx v, = v > 0 is called stable, and
(i) supgex ¥z < ¥ < 00 is called regular.

Example 1.16 (Non-regular CTMC). For the countable state space N, consider the probability
transition matrix P such that p, ,+1 = 1 and the exponential holding times with rate v, = n? for each
state n € N. Clearly, sup,,cy Vn = 00, and hence it is not regular.

Remark 4. Pure jump homogeneous CTMC with finite stable states are stable and regular. We will
focus on pure jump homogeneous CTMC over countably infinite states, that are stable and regular.

1.3 Jump process

Proposition 1.17. For a stable CTMC, the jump times are stopping times.

Proof. For a stable CTMC X, we let 0 < v < inf ey 1. Then, by coupling in Appendix 7?7, we have a
sequence of 4.4.d. random variables T : ) — R{\i, such that T,, < T,, almost surely and ET,, = % for each
n € N. Defining S,, = Z?=1 T;, it follows that S, < S, for each n € N. Since S,, is sum of n almost
surely finite random variables, it is finite almost surely. It follows that S, is finite almost surely. O

Proposition 1.18. For a regular CTMC, Ny is almost surely finite for all finite times t € Ry.



Proof. Let X be a regular CTMC and sup,cy v» < ¥ < 0co. Then, by coupling in Appendix 77, we have
a sequence of i.i.d. random variables T : Q — R{\i, such that T;, > T, almost surely and ET,, = % for

each n € N. Defining §,, £ Z?zl T, and N, £ D neN ]l{s, <t} it follows that S,, > S,, for each n € N

and Ny < N, for all t € Ry. Since N is a Poisson counting process with finite rate v, it is almost surely
finite at all ¢ € Ry and the result follows. O

Remark 5. From the strong Markov property and the time-homogeneity of the CTMC X, we see that
P({Zn =y} | {Zn-1=1}) = Ppy(Sn—1,5n) = Puy(0,T3,).

Remark 6. From the law of total probability, it follows that for any rcll stochastic process X : Q — XR+
with countable state space X, the sum of jump transition probabilities Zy;éx P,y (Sph-1,S5,) =1 for all
states Xg, , =z € X.

Lemma 1.19. For a homogeneous CTMC X, the jump probability from state Z,,_1 to state Z,, depends
solely on Z,_1 and is independent of jump instants. That is,

E|:]]-{Zn:y} | 5:5"_1} = ]E{]]-{Zn:y} | U(Zn—l)]~

Proof. Fix states z,y € X and a historical event H € Fg
bility, we write

From the definition of conditional proba-

n—1"°

P{T, > u, Zn = y} | {Zu_1 = 2}nH) = P({Xs, =y} | {Tn > u, Xs, , = a}nH)P({T}, > u} | {Zn_1 = 2}NH).

n—1

From the strong Markov property of X, we get P({T), > u} | {Z,—1 =2} N H) = Fy(u). We further
observe that {7}, > u,Xg, , =a}NH ={X; =z,t € S,,_1 +[0,u]}NH € Fs,_, 4. From the definition
of excess time, we can write S, = Sp—1 +u+ Ys, ,+v for any v € [0,7,]. Further, from the strong
Markov property and the time-homogeneity of the CTMC X, and the memoryless property of excess
time Y, we obtain

P({Xs, =y} | {Tn > u, Xs,_, =a}H) = P{Xs, svuive, on =} | {Xs, 100 = 0}) = Py (0,Y0).
This implies that sojourn times and jump instant probabilities are independent. O

Definition 1.20. The jump process Z is also sometimes referred to as the embedded DTMC of the
pure jump CTMC X. The corresponding jump transition probabilities are defined

Py £ Pry(Sp-1,5.) = P({Xs, =y} | {XSn—l = x})? z,y € X.

Remark 7. If v, = 0, then for any u > 0, we have P({Yy > u} | {Xo ==2}) = 1, and hence S; =
almost surely whenever Xy = x. By convention, we set p;, =1 and p,, = 0 for all states y # «.

Corollary 1.21. The matriz p £ (Pay : @,y € X) is stochastic, and if v, > 0 then py, = 0.

Proof. Recall pyy = Pry(S1). If v, > 0, then lim, o P({Yy > u} |{Xo = 2z}) =0, and hence 5 is finite
almost surely. By definition Xg, # Xo = z, and hence p,, = 0. O

Proposition 1.22. Consider a stable CTMC X : Q — X®+. Then for all states z,y € X and duration
u e Ry,

P({Thi1>u, Zni1 =y} [{Xo=20,...,Zn = 2,50 < 50,...,5 < 8n}) = paye” "=,

Proof. The history of the process until stopping time S, is given by Fs, = o (S0, (Z0,T1), -+, (Zn-1,Tn), Zn)-
Therefore H = {Sy < so} Ny {Zi_1 = x;_1,5; < s;} € Fs, and {Z, =z} N H € Fg,. Using strong
Markov property and time-homogeneity of the CTMC X, we have

P{Ths1 >u, Zny1 =y} | {Zn=2}NH) =P, {S1 >u,Z1 =y}.
The result follows from the previous Lemma ?7. O

Corollary 1.23. For a time-homogeneous CTMC, the transition probability matriz p : X — M(X) for
the embedded DTMC and holding times T : Q) — le_ are independent. The jump process Z : Q — X%+
is a homogeneous Markov chain with countable state space X. The holding time sequence T : Q — ]RI_\E_ i$
independent and T, is distributed exponentially with rate vz, _, for each n € N.



Example 1.24 (Poisson process). For a Poisson counting process N :  — ZE* with time-
homogeneous rate A, the countable state space is Z,, and transition rate v, = A for each state n € Z .
It follows from the memoryless property of exponential random variables, that

Fo(t) = P({Yy >t} | {Ny =n}) = P{S1 > t} = .

Further, the embedded Markov chain or the jump process is given by the initial state Ny = 0 and the
transition probability matrix P = (py m : n,m € Z4) where p, 11 = 1 and py, , = 0 for m # n + 1.
This follows from the definition of T3, since p, m = P({N1, = m} | {No = m}) = Lim—ni13}-

Theorem 1.25. A pure-jump homogeneous CTMC whose embedded DTMC' is recurrent is reqular.

Proof. Let Xo = x € X be the initial state. Let Ny(n) = > ;_; 1;z,-,} be the number of visits to a
state © € X in the first n transitions and T;° be the ith sojourn time in the state z. From the recurrence
of the embedded chain, the state x occurs infinitely often, i.e. lim,ecn Ny(n) = oo almost surely. It
follows that the sojourn time sequence T7 : ) — ]RI_\‘._ is i.4.d. and exponentially distributed with mean

ET? = L < oo. Since S, > SN T2 we get that

K3

N (n)
mi =Y P{S, <t}<> P Y TP <tp=ut
neN neN i=1
It follows that NN, is almost surely finite for any finite time ¢ € R.. O

A Exponential random variables

Lemma A.1. Let X be an exponential random variable, and S be any positive random variable, inde-
pendent of X. Then, for allu >0

PUX >S+u} | {X>8))=P{X >u}.

Proof. Let the distribution of S be F' and X be memoryless with rate p. From the definition of conditional
probability, we can write P({X > S+ u} | {X > S}) = %ﬁf}. Since a probability is an expectation
of an indicator, we can write

P{X > S +u} =E[E[lixs54u) | 0(9)]] = Ele #5FW] = emHuR[e 9],

It follows that P({X > S+u} | {X > S}) =P{X >u}=e " for all u € Ry. O

B Coupling

For a homogeneous regular and stable CTMC X : Q — X®+, we denote the embedded Markov chain by
Z : Q) — X%+ and the independent inter-jump time sequence by T": € — Rli where T;, is an exponential
random variable with rate vz, _, for all n € N. From the regularity and stability of process X, we have

0<7v< inf v, <supr, <v < oo.
zeX zeX

Consider an 4.7.d. uniform random sequence U : 2 — [0, 1] and define three dependent random sequences
T,7T,T:Q— RI}I_ such that for each n € N, we have

= 1 1
T, & —=logU,, T, = ——logUn,, T, & —
v v

——n

log U,,.
VZ, 1

We observe that 7 and T are 4.i.d. exponential random sequences with rates v and 7 respectively.
Further, T is an independent exponential random sequence with the rate vz, _, for T,. In addition, by
construction, we have T, < T;, < T, for each n € N.



