
Lecture-02: Embedded Markov Chain and Sojourn Times

1 State Evolution

For a homogeneous Markov process X : Ω → XR
+ on countable state space X ⊆ R with sample paths

that are right continuous with left limits (rcll), we wish to characterize the transition kernel P : R+ →
[0, 1]X×X, where Pxy(t) ≜ P ({Xs+t = y}

∣∣ {Xs = x}) for all s, t ∈ R+. To this end, we define the
sojourn time in any state, the jump times, and the jump transition probabilities.

1.1 Transition instants and counting process

Definition 1.1. Let S0 ≜ 0. The nth jump time of a right continuous countable state stochastic
process X : Ω → XR+ is defined inductively as Sn ≜ inf

{
t > Sn−1 : Xt ̸= XSn−1

}
.

Definition 1.2. The counting process associated with jump times sequence S : Ω → RN
+ is denoted by

N : Ω → ZR+

+ , where the number of jumps in duration (0, t] is denoted by Nt ≜
∑

n∈N 1{Sn⩽t}.

Lemma 1.3. Each term of the jump time sequence S : Ω → RN
+ is adapted to the natural filtration F•

of the process X : Ω → XR+ .

Proof. Since X is rcll, it is progressively measurable, and hence the event {Sn ⩽ t} ∈ Ft.

Definition 1.4 (Age of a state). For the counting process N associated with the CTMC X, we can

define age process A : Ω → RR+

+ where the age of last transition at time t is denoted by At ≜ t−SNt
for

all times t ∈ R+. For the CTMC X, we can write the age of last transition at time t ∈ R+ as

At ≜ inf {s > 0 : Xt−s ̸= Xt} .

Definition 1.5 (Excess time in a state). For the counting process N associated with the CTMC X,

we can define the excess time process Y : Ω → RR+

+ where Yt ≜ SNt+1− t is the time until next transition
at time t. We can write the excess time at time t ∈ R+ for the CTMC X as

Yt ≜ inf {s > 0 : Xt+s ̸= Xt} .

Remark 1. For a homogeneous CTMC X, the distribution of excess time Yt conditioned on the current
state Xt, doesn’t depend on time t. Hence, we can define the following conditional complementary
distribution of excess time as F̄x(u) ≜ P ({Yt > u} | {Xt = x}) = Px {Y0 > u} .
Lemma 1.6. For a homogeneous CTMC X, there exists a positive sequence ν ∈ RX

+, such that

F̄x(u) ≜ P ({Yt > u} | {Xt = x}) = e−uνx , x ∈ X.

Proof. We fix a state x ∈ X, and observe that the function F̄x : R+ → [0, 1] is non-negative, non-
increasing, and right-continuous. Using the Markov property and the time-homogeneity, we can show
that F̄x satisfies the semigroup property. In particular,

F̄x(u+ v) = P ({Yt > u+ v} | {Xt = x}) = P ({Yt > u, Yt+u > v} | {Xt = x}) = F̄x(u)F̄x(v).

The only continuous function F̄x : R+ → [0, 1] that satisfies the semigroup property is an exponential
function with a negative exponent.

Example 1.7 (Poisson process). Consider the counting process N : Ω → ZR+

+ for a Poisson point
process with homogeneous rate λ. Using the stationary independent increment property, we have for all
u ⩾ 0

F̄i(u) = P ({Yt > u} | {Nt = i}) = P ({Nt+u = i} | {Nt = i}) = P {Nt+u −Nt = 0} = P {Yt > u} = e−λu.
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1.2 Sojourn time in a state

Definition 1.8. The jump process Z : Ω → XN is a discrete time process, derived from the continuous
time stochastic process X : Ω → XR+ by sampling X at the jump times S : Ω → RN

+. The state of the

process X at the nth jump time Sn is the nth state Zn ≜ XSn
of the jump process Z.

Definition 1.9. The sojourn time in the state Zn−1 for the process X is defined as Tn ≜ Sn − Sn−1.

Remark 2. From the definition of jump instants, it follows that the history until time t is

Ft = σ(S0, (Z0, T1), (Z1, T2), . . . , (ZNt , At)).

We can verify that FSn = σ(S0, (Z0, T1), . . . , (Zn−1, Tn), Zn).

Lemma 1.10. For a homogeneous CTMC, each sojourn time Tn : Ω → R+ is a continuous memoryless
random variable, and the sequence of sojourn times (Tj : j ⩾ n) is independent of the past FSn−1

conditioned on Zn−1.

Proof. We observe that the sojourn time Tn equals the excess time YSn−1 , where the process remains in
state Zn−1 = XSn−1 in the duration Sn−1 + [0, Tn). Using the strong Markov property, we can write the
conditional complementary distribution of Tn given any historical event H ∈ FSn−1

and u ⩾ 0 as

P ({Tn > u} | {Zn−1 = x} ∩H) = P (
{
YSn−1 > u

}
|
{
XSn−1 = x

}
∩H) = exp(−uνx) = F̄x(u).

Corollary 1.11. If Xn = x, then the holding time Tn+1 is an exponential random variable with rate νx.

Definition 1.12. For a homogeneous CTMC X, the exponential rate for the random holding time in a
state x is called the transition rate out of state x denoted by νx.

Definition 1.13. For a CTMC X, a state x ∈ X is called instantaneous if νx = ∞, stable if
νx ∈ (0,∞), and absorbing if νx = 0.

Remark 3. Transition rate out of a state x is the inverse of mean holding time in this state x, i.e.
νx = 1

ExT1
. Therefore, the mean holding time ExT1 in state x is ∞ in an absorbing state, zero in an

instantaneous state, and almost surely finite and non-zero in a stable state.

Definition 1.14. A homogeneous CTMC with no instantaneous states is called a pure jump CTMC.

Definition 1.15. A pure jump CTMC with
(i) all stable states and infx∈X νx ⩾ ν > 0 is called stable, and
(ii) supx∈X νx ⩽ ν < ∞ is called regular.

Example 1.16 (Non-regular CTMC). For the countable state space N, consider the probability
transition matrix P such that pn,n+1 = 1 and the exponential holding times with rate νn = n2 for each
state n ∈ N. Clearly, supn∈N νn = ∞, and hence it is not regular.

Remark 4. Pure jump homogeneous CTMC with finite stable states are stable and regular. We will
focus on pure jump homogeneous CTMC over countably infinite states, that are stable and regular.

1.3 Jump process

Proposition 1.17. For a stable CTMC, the jump times are stopping times.

Proof. For a stable CTMC X, we let 0 < ν ⩽ infx∈X νx. Then, by coupling in Appendix ??, we have a
sequence of i.i.d. random variables T : Ω → RN

+, such that Tn ⩽ Tn almost surely and ETn = 1
ν for each

n ∈ N. Defining Sn ≜
∑n

i=1 T i, it follows that Sn ⩽ Sn for each n ∈ N. Since Sn is sum of n almost
surely finite random variables, it is finite almost surely. It follows that Sn is finite almost surely.

Proposition 1.18. For a regular CTMC, Nt is almost surely finite for all finite times t ∈ R+.
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Proof. Let X be a regular CTMC and supx∈X νx ⩽ ν < ∞. Then, by coupling in Appendix ??, we have
a sequence of i.i.d. random variables T : Ω → RN

+, such that Tn ⩾ Tn almost surely and ETn = 1
ν for

each n ∈ N. Defining Sn ≜
∑n

i=1 T i and N t ≜
∑

n∈N 1{Sn⩽t}, it follows that Sn ⩾ Sn for each n ∈ N
and Nt ⩽ N t for all t ∈ R+. Since N is a Poisson counting process with finite rate ν, it is almost surely
finite at all t ∈ R+ and the result follows.

Remark 5. From the strong Markov property and the time-homogeneity of the CTMC X, we see that

P ({Zn = y} | {Zn−1 = x}) = Pxy(Sn−1, Sn) = Pxy(0, Tn).

Remark 6. From the law of total probability, it follows that for any rcll stochastic process X : Ω → XR+

with countable state space X, the sum of jump transition probabilities
∑

y ̸=x Pxy(Sn−1, Sn) = 1 for all
states XSn−1

= x ∈ X.

Lemma 1.19. For a homogeneous CTMC X, the jump probability from state Zn−1 to state Zn depends
solely on Zn−1 and is independent of jump instants. That is,

E
[
1{Zn=y} | FSn−1

]
= E

[
1{Zn=y} | σ(Zn−1)

]
.

Proof. Fix states x, y ∈ X and a historical event H ∈ FSn−1
. From the definition of conditional proba-

bility, we write

P ({Tn > u,Zn = y} | {Zn−1 = x}∩H) = P ({XSn
= y} |

{
Tn > u,XSn−1

= x
}
∩H)P ({Tn > u} | {Zn−1 = x}∩H).

From the strong Markov property of X, we get P ({Tn > u} | {Zn−1 = x} ∩ H) = F̄x(u). We further
observe that

{
Tn > u,XSn−1

= x
}
∩H = {Xt = x, t ∈ Sn−1 + [0, u]}∩H ∈ FSn−1+u. From the definition

of excess time, we can write Sn = Sn−1 + u + YSn−1+u for any u ∈ [0, Tn]. Further, from the strong
Markov property and the time-homogeneity of the CTMC X, and the memoryless property of excess
time Y , we obtain

P ({XSn
= y} |

{
Tn > u,XSn−1

= x
}
∩H) = P (

{
XSn−1+u+YSn−1+u

= y
}
|
{
XSn−1+u = x

}
) = Pxy(0, Y0).

This implies that sojourn times and jump instant probabilities are independent.

Definition 1.20. The jump process Z is also sometimes referred to as the embedded DTMC of the
pure jump CTMC X. The corresponding jump transition probabilities are defined

pxy ≜ Pxy(Sn−1, Sn) = P ({XSn
= y}

∣∣ {
XSn−1

= x
}
), x, y ∈ X.

Remark 7. If νx = 0, then for any u ⩾ 0, we have P ({Y0 > u} | {X0 = x}) = 1, and hence S1 = ∞
almost surely whenever X0 = x. By convention, we set pxx = 1 and pxy = 0 for all states y ̸= x.

Corollary 1.21. The matrix p ≜ (pxy : x, y ∈ X) is stochastic, and if νx > 0 then pxx = 0.

Proof. Recall pxy = Pxy(S1). If νx > 0, then limu→∞ P ({Y0 > u} | {X0 = x}) = 0, and hence S1 is finite
almost surely. By definition XS1 ̸= X0 = x, and hence pxx = 0.

Proposition 1.22. Consider a stable CTMC X : Ω → XR+ . Then for all states x, y ∈ X and duration
u ∈ R+,

P ({Tn+1 > u,Zn+1 = y} | {X0 = x0, . . . , Zn = x, S0 ⩽ s0, . . . , Sn ⩽ sn}) = pxye
−uνx .

Proof. The history of the process until stopping time Sn is given by FSn
= σ(S0, (Z0, T1), . . . , (Zn−1, Tn), Zn).

Therefore H ≜ {S0 ⩽ s0} ∩n
i=1 {Zi−1 = xi−1, Si ⩽ si} ∈ FSn and {Zn = x} ∩ H ∈ FSn . Using strong

Markov property and time-homogeneity of the CTMC X, we have

P ({Tn+1 > u,Zn+1 = y} | {Zn = x} ∩H) = Px {S1 > u,Z1 = y} .

The result follows from the previous Lemma ??.

Corollary 1.23. For a time-homogeneous CTMC, the transition probability matrix p : X → M(X) for
the embedded DTMC and holding times T : Ω → RN

+ are independent. The jump process Z : Ω → XZ+

is a homogeneous Markov chain with countable state space X. The holding time sequence T : Ω → RN
+ is

independent and Tn is distributed exponentially with rate νZn−1
for each n ∈ N.
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Example 1.24 (Poisson process). For a Poisson counting process N : Ω → ZR+

+ with time-
homogeneous rate λ, the countable state space is Z+, and transition rate νn = λ for each state n ∈ Z+.
It follows from the memoryless property of exponential random variables, that

F̄n(t) = P ({Yu > t} | {Nu = n}) = P {S1 > t} = e−λt.

Further, the embedded Markov chain or the jump process is given by the initial state N0 = 0 and the
transition probability matrix P = (pn,m : n,m ∈ Z+) where pn,n+1 = 1 and pn,m = 0 for m ̸= n + 1.
This follows from the definition of T1, since pn,m = P ({NT1

= m} | {N0 = m}) = 1{m=n+1}.

Theorem 1.25. A pure-jump homogeneous CTMC whose embedded DTMC is recurrent is regular.

Proof. Let X0 = x ∈ X be the initial state. Let Nx(n) =
∑n

k=1 1{Zk=x} be the number of visits to a
state x ∈ X in the first n transitions and T x

i be the ith sojourn time in the state x. From the recurrence
of the embedded chain, the state x occurs infinitely often, i.e. limn∈N Nx(n) = ∞ almost surely. It
follows that the sojourn time sequence T x : Ω → RN

+ is i.i.d. and exponentially distributed with mean

ET x
i = 1

νx
< ∞. Since Sn ⩾

∑Nx(n)
i=1 T x

i , we get that

mt =
∑
n∈N

P {Sn ⩽ t} ⩽
∑
n∈N

P


Nx(n)∑
i=1

T x
i ⩽ t

 = νxt.

It follows that Nt is almost surely finite for any finite time t ∈ R+.

A Exponential random variables

Lemma A.1. Let X be an exponential random variable, and S be any positive random variable, inde-
pendent of X. Then, for all u ⩾ 0

P ({X > S + u} | {X > S}) = P {X > u} .

Proof. Let the distribution of S be F andX be memoryless with rate µ. From the definition of conditional

probability, we can write P ({X > S + u} | {X > S}) = P{X>S+u}
P{X>S} . Since a probability is an expectation

of an indicator, we can write

P {X > S + u} = E[E[1{X>S+u} | σ(S)]] = E[e−µ(S+u)] = e−µuE[e−µS ].

It follows that P ({X > S + u} | {X > S}) = P {X > u} = e−µu for all u ∈ R+.

B Coupling

For a homogeneous regular and stable CTMC X : Ω → XR+ , we denote the embedded Markov chain by
Z : Ω → XZ+ and the independent inter-jump time sequence by T : Ω → RN

+ where Tn is an exponential
random variable with rate νZn−1 for all n ∈ N. From the regularity and stability of process X, we have

0 < ν ⩽ inf
x∈X

νx ⩽ sup
x∈X

νx ⩽ ν < ∞.

Consider an i.i.d. uniform random sequence U : Ω → [0, 1]N and define three dependent random sequences
T , T, T : Ω → RN

+ such that for each n ∈ N, we have

Tn ≜ −1

ν
logUn, Tn ≜ −1

ν
logUn, Tn ≜ − 1

νZn−1

logUn.

We observe that T and T are i.i.d. exponential random sequences with rates ν and ν respectively.
Further, T is an independent exponential random sequence with the rate νZn−1

for Tn. In addition, by

construction, we have Tn ⩽ Tn ⩽ Tn for each n ∈ N.
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