Lecture-03: Uniformization of Markov Processes

1 Alternative construction of CTMC

Definition 1.1. Let Z : Q — XY be a discrete time Markov chain with a countable state space X C R,
and the corresponding transition probability matrix p : X — M(X). Further, we let v : X — Ry be the
set of transition rates such that p,, = 0 if v, > 0 . For any initial state Z; € X, we can define a right
continuous with left limits piece-wise constant stochastic process X : Q — X®+ for each t € R, as

Xe 2 Znals, s0(),
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where Sy = 0 and the nth transition instant S, £ Z?:l T;, where T, is a random variable independent
of (So, (Zo,T1),...,(Zn—2,Tn—1)), and distributed exponentially with rate vz, _,. We define the number

of transitions until time ¢t € R, by N, £ > nen Lis, <t} and the age of the last transition at time ¢ € Ry
as A, &t — SN, -

Remark 1. From the definition, any sample path of the process is right-continuous with left limits, and has
countable state space X. The history of the process until time ¢ is given by o (So, (Zo,T1), - - -, (Zn,, At)).

Remark 2. A necessary condition for the process X to be defined on index set R, is that for each
t € Ry, there exists an n such that S, < t < Sp41. That is, P{N; < oo} = P{Ss >t} = 1 for all
t € R;. This is equivalent to P{Se =0} = 1, or P{So <0} = 0. Let w € {Sx < 00}, then we
can’t define the process for ¢t > So,. We will show that X is a CTMC. Recall that, a regular CTMC
X :Q — X+ has P{N; <o} = P{So, >t} =1forallt € Ry.

Lemma 1.2. Conditioned on the process state at the beginning of an interval, the increment of the
counting process N : 1 — ZI_R;J“ is independent of the past, and depends only on the duration of the
increment. That is, for a historical event H € F4 and state x € X,

P({N: = N, = k} | {X, = 2} N H) = P.({Ni_, = k}).

Proof. From the independence of inter-transition times, we know that T i, is independent of the
history F, for 5 > 2 conditioned on the process state Xy = x. Further, from the memoryless property
of an exponential random variable, the excess time Y, distribution conditioned on Fy is exponential
with rate vz, , i.e. identically distributed to T, 41. Therefore, the the conditional distribution of
(Ys, T, 42, - .&, Tn,+r) given the current process state Xy = z, is identical to that of the conditional
distribution of inter-transition times (73,75, ..., ) given initial state Xy = 2. Hence for any historical
event H € ¥, and state x € X, we can write the conditional probability of increment N; — N for ¢t > s,
as

Ns+k Ns+k+1
P({N,— N, =k} | {sz}ﬂH)P({YSJr Yo Li<t-s<Yi+ Y T} | {Xs=2}nH)
i=Ns+2 i=N,s+2

=P, {Sk41>t—5> 8} =P, {Nt—s =k}.
O

Proposition 1.3. The stochastic process X :  — XB+ constructed in Definition s a time-
homogeneous CTMC.

Proof. For states x,y € X, we can write the probability of process being in state y, conditioned on any
historical events H € F, as

PU{X;=y} | {Xo=2}nH)= > P{Xi=y,N,— N, =k} | {X,=2}nH).
k€Z4



From the construction of process X in Definition the conditional independence of counting process
and time homogeneity from Lemma we can write P({X; =y, N; — Ns = k} ’ {Xs=2}NH) as

PH{X:=y} | {N:— Ns=k,Xs=2a}NH)P{N; — N; =k} | {Xs =2} nH)
= (pk):pypz {Nt—s = k} - P({Xt—s = y} | {Nt—s = kaXO = x}>Pa: {Nt—s = k} = Px {Xt—s = yaNt—s = k} .
Thus, we have shown the time homogeneity and Markov property for the process X. O

Theorem 1.4. A stochastic process X :  — X®+ defined on countable state space X C R and having
right continuous sample paths with left limits, is a CTMC' iff

i sojourn times are independent and exponentially distributed with rate v, where Xs,, =z, and
@i jump transition probabilities pgy = Puy(Sn—1,Sn) are independent of jump times S,, such that
Zy;ﬁx Pay = 1.
1.1 Generator Matrix

Theorem 1.5. For a regular time-homogeneous CTMC X : Q — X®+, the generator matriz exists and
is defined in terms of sojourn time transition rates v € R?E, and jump transition matriz p € [0,1]°*% as

Qux = —Va, wa = VzPxy-

Proof. Consider a fixed time ¢t € R and states z,y € X. We can expand the (z,y)th entry of transition
matrix in terms of disjoint events {N; = n} as

Poy(t) = P {X; =y} = Z P {X, =y, N, =n}.

neZy

We can write the upper and lower bound the transition probability Py, (t) as

1 1
S PAXi =y, Ny =n} < Poy(t) <Y Po{Xe =y, Ny =n} + P {N, > 2}

n=0 n=0

Since I, = Lz}, we can write the probabilities in terms of the identity operator I as

t
Pr {Xt =Y, Nt = 0} - myeiyza Pr {Xf =Y, Nt = 1} = (1 - ITy)pry/ Vmeiyy(tiu)eiyxudu-
0

The second equality follows from the nested conditional expectation. In particular, we have

P, {Xt =y, Nt = 1} = l{Iiy}EwEu{Xt:y,Tz>t751,51<t}|9’~SI] — (1 _ Io:y)pwaml{slgt}e_u”(t_sl).

Since {N; > 2} is of order o(t) for small ¢, we can write

Pry(t) — Iy 1—e Vet (e7vvt — emvat)
-, = - :EI:E - 7 cPlxy ™~ N, 1- Iw t).
P Valzy ot + VaDay (Ve — vyt ( y) +o(t)
Taking limit as ¢ | 0, we get the result. O

Corollary 1.6. For each state x € X, the generator matriz Q € R**X for a pure-jump homogeneous
CTMC satisfies

Og_Q$I<OO7 O<Qa;y<00,y€x ZQIUZO
yeX

Remark 3. Recall that for a homogeneous discrete time Markov chain with one-step transition probability
matrix P, we can write the n-step transition probability matrix P(™) = P™. That is, for any given
stochastic matrix P, we can construct a discrete time Marko chain. We can generalize this notion to
homogeneous continuous time Markov chains as well. Given a matrix Q@ € RX*Y that satisfies the
properties of a generator matrix given in Corollary [L.6] we can construct a homogeneous continuous time
Markov chain X : Q — X®+ by finding its transition kernel P : Ry — [0,1]**% by defining P(t) £ €!?
for all t € R.. We observe that P(1) = 9 and we have P(t) = P(1) for all t € R,. We need to show
that such a defined function is indeed a probability transition kernel. We will first show that such a
function P satisfies some of the properties of the transition kernel, and then show that P(t) is transition
matrix at all times ¢ € R,..



Theorem 1.7. Let Q € RX¥*Y be a matriz that satisfies the properties of generator matriz given in
Corollary . We define a function P : Ry — fox by P(t) = €% for allt € Ry. Then the function
P satisfies the following properties.

1. P has the semigroup property, i.e. P(s+1t) = P(s)P(t) for all s,t € Ry.

2. P is the unique solution to the forward equation, dl;gt) = P(t)Q with initial conditon P(0) = I.

3. P is the unique solution to the backward equation, dzgt) = QP(t) with initial condition P(0) = 1.

4. For all k € N, we have dkkp(t) = Q.
4t 1o

Proof. Given the definition of P and properties of @), one can easily check these properties. O

Theorem 1.8. A finite matriz Q € RX*X satisfies the properties of a generator matriz given in Corol-
lary iff the function P : R, — szx defined by P(t) £ €' is a stochastic matriz for all t € R,

Proof. Sufficiency has already been seen before, and hence we will focus only on necessity. Accordingly,
we assume that Q € R**X satisfies the properties of a generator matrix given in Corollary then we
will show that P(t) = e!? is a stochastic matrix. Recall that Q17 = 0 for all ones column vector 17
and hence Q17 = 0 for all n € N. Expanding P(t) in terms of expression for matrix exponentiation,
we write P(t) =1+, %Q" This implies that P(¢)17 = 17. O

1.2 Transition graph
The weighted directed transition graph (V, E,w) consists of vertex set V' = X and the edges being

EZ{(x’y)GXXDCIsz>07y7é$}-

The weights w : £ — R, of the directed edges are given by way = Quy = VaPDuy-

2 Uniformization

Consider a homogeneous continuous-time Markov chain X :  — X®+ in which the mean time spent in a
state is identical for all states, i.e. v, = v uniformly for all states 2 € X. Recall that N; = >~ L(s,<¢}
denotes the number of state transitions until time ¢ € R4. Since the random amount of time spent in
each state is 7.7.d. with common exponential distribution of rate v, the counting process NV : 0 — ZE* is
a Poisson process with rate v. In this case, we can explicitly characterize the transition kernel function
PRy — [0,1]**% for this CTMC X in terms of the jump transition probability matrix p € [0, 1]%**
and uniform transition rate v. To this end, we use the law of total probability over countable partitions
{Ny=n}:neZy) to get

Poy(t)= Y2 PoANG) =} PUX = 9} | (Xo= N =) = 3 ple 2"

ne€Zy n€Zy
This equation could also have been derived by observing that @ = —v(I — p) and hence using the
exponentiation of matrix, we can write
P(t) _ efut(pr) — e Vteltp — oVt Z pn (I/t)" (1)
!
n€Zy s

Eq. gives a closed form expression for P(t) and also suggests an approximate computation by an
appropriate partial sum. However, its application is limited as the transition rates for all states are all
assumed to be equal. It turns out that any regular Markov chain can be transformed in this form by
allowing hypothetical transitions from a state to itself.



2.1 Uniformization step

Consider a regular CTMC X : Q — X®+ with bounded transition rates, with finite rate v such that
v, < v for all states z € X. Since from each state x € X, the Markov chain leaves at rate v,, we
could equivalently assume that the transitions occur at a rate v but only “z are real transitions and the
remaining transitions are fictitious self-transitions.

Construction 2.1 (uniformization). For any regular continuous time Markov chain X :  — X+
with transition rate v : X — R, and jump probability transition matrix p € [0,1]*** we can find a
finite rate v > sup,eq V2. We construct a continuous time Markov chain YV : Q — X%+ with uniform
transition rates v for all states x € X, and jump probability transition matrix ¢ € [0,1]**% defined as

Vg Vg

The process Y is called the uniformized version of process X. This technique of uniformizing the rate
in which a transition occurs from each state to any other state by introducing self transitions is called
uniformization.

Theorem 2.2. A regular CTMC X and its uniformized version Y are identical in distribution.

Proof. We consider the i.i.d. sequence of inter-transition times 7" : 2 — H@i with the common exponential
distribution of rate v for the Markov process Y. Let the transition times be defined as Sy £ 0 and
S, = Z?:l T; for all n € N. Assuming the initial state = for the Markov process Y, we define a random

sequence of indicators £ :  — {0, 1}N7 defined by

&n = l{YSn?éfE}? n € N.

From the definition of uniformized process Y, we know that P, {4 =& ==&, =0} = ¢, = (1 —
%)", and ¢ is an i.i.d. sequence. We can define the corresponding counting process N : ) — Zli that
counts the number of transitions to exit state x, as

N£inf{neN:¢, =1}.

Since ¢ is 4.7.d. Bernoulli, N is a geometric random variable with success probability 1 — g,, = “=. To
show that the two Markov processes Y and X have identical distribution, it suffices to show that

(a) U £ Sy is distributed exponentially with rate v,, and

(b) P{Ysy =y} | {Yo =2}) = pay.

To see (a), we observe that random sequence T and random variable N are independent, and hence we
can compute the moment generating function of U as

N
]E[H e T
n=1

To see (b), from the Markov property of process Y and its embedded jump transition matrix ¢, we
observe that

My(0) =E

N]

:EMﬁ(e):Z( i )nq;L;l(l—qm): =

neN v+ VI+0

P{Yu=y}=) P.{Yu=yN=n}=> P{Vs = =VYs_, =2Ys =y}
neN neN
_ n—1 __ me _
- %qzqu T loq. U

O

Remark 4. Any regular continuous time Markov chain X : Q — X®+ can be thought of as being in a
process that spends a random time in state z € X distributed exponentially with rate v, and then makes
a transition to state y € X with probability pj,. Then, one can write the probability transition kernel as

n

() vt (1)
pzy(t)zzqu)e tT
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