
Lecture-04: Invariant Distribution of Markov Processes

1 Class Properties

Definition 1.1. For a CTMC X : Ω → XR+ defined on the countable state space X ⊆ R, we say a state
y is reachable from state x if Pxy(t) > 0 for some t > 0, and we denote x → y. If two states x, y ∈ X

are reachable from each other, we say that they communicate and denote it by x ↔ y.

Lemma 1.2. Communication is an equivalence relation.

Definition 1.3. Communication equivalence relation partitions the state space X into equivalence classes
called communicating classes. A CTMC with a single communicating class is called irreducible.

Theorem 1.4. A regular CTMC and its embedded DTMC have the same communicating classes.

Proof. It suffices to show that x → y for the regular Markov process iff x → y in the embedded
chain. If x → y for the embedded chain, then there exists a path x = x0, x1, . . . , xn = y such that
px0x1

px1x2
. . . pxn−1xn

> 0 and 0 < νx0
νx1

. . . νxn−1
. It follows that Sn is a stopping time and sum of n

independent exponential random variables with rates νx0 , . . . , νxn−1 , and we can write

Pxy(t) ⩾ P {X0 = x0, XS1
= x1, . . . , XSn

= xn, Nt = n} =

n−1∏
k=0

pxkxk+1
E[1{Nt=n} | ∩n

i=0 {Zi = xi}] > 0.

Conversely, if the states y is not reachable from state x in embedded chain, then it won’t be reachable
in the regular CTMC.

Corollary 1.5. A regular CTMC is irreducible iff its embedded DTMC is irreducible.

Remark 1. There is no notion of periodicity in CTMCs since there is no fundamental time-step that
can be used as a reference to define such a notion. In fact, for any state x ∈ X of a non-instantaneous
homogeneous CTMC we have Pxx(t) > e−νxt > 0 for all t ⩾ 0.

1.1 Recurrence and transience

Consider a continuous time Markov chain X : Ω → XR+ and its embedded discrete time Marko chain
Z : Ω → XZ+ .

Definition 1.6. Let k ∈ N. For any state x ∈ X, we denote the kth return time to state x by τ+x (k)

and kth sojourn time in state x by Y
(x)
k . We inductively define τ+x (0) ≜ 0 and

τ+x (k) ≜ inf
{
t > τ+x (k − 1) + Y

(x)
k : Xt = x

}
.

Definition 1.7. A state x ∈ X is said to be recurrent if Px {τ+x (1) < ∞} = 1 and transient if
Px {τ+x (1) < ∞} < 1. Furthermore, a recurrent state x is said to be positive recurrent if Exτ

+
x (1) < ∞

and null recurrent if Exτ
+
x (1) = ∞.

Definition 1.8. We denote the number of visits to state y during kth successive visit to state x by

Nxy(k) ≜
∑
n∈N

1[τ+
x (k−1),τ+

x (k))(Sn)1{Zn=y}.

The total number of visits to all states during kth successive visit to state x is defined as

Nx(k) ≜
∑
y∈X

Nxy(k) =
∑
n∈N

1[τ+
x (k−1),τ+

x (k))(Sn).

The total number to visits to all states before kth return to state x is defined as S+
x (k) ≜

∑k
j=1 Nx(j).
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Lemma 1.9. We define the jth sojourn time in state y during kth return duration [τ+x (k − 1), τ+x (k))

for state x as Y
(y)
kj . Then, the k return time to state x is

τ+x (k) = τ+x (k − 1) +
∑
y∈X

Nxy(k)∑
j=1

Y
(y)
kj .

Proof. Since 1 = 1{Xt∈X} = 1∪y∈X{Xt=y} =
∑

y∈X 1{Xt=y}, we can write the following equality

τ+x (k) = τ+x (k − 1) +

∫ τ+
x (k)

τ+
x (k−1)

∑
y∈X

1{Xt=y}dt.

Further, we can write 1{Xt=y} =
∑

n∈N 1{Zn=y}1[Sn,Sn+1)(t). Interchanging sum and integral using
monotone convergence theorem, we obtain

τ+x (k) = τ+x (k − 1) +
∑
y∈X

∑
n∈N

1{Zn=y}(Sn+1 − Sn)1{S+
x (k−1)⩽n<S+

x (k)}.

We observe that Vxy(k) ≜ {n ∈ N : S+
x (k − 1) ⩽ n < S+

x (k), Zn = y} is the set of transitions which cor-
respond to visits to state y during kth return time to state x, and Nxy(k) = |Vxy(k)|. Further, the
duration Sn+1 − Sn is the sojourn time in state Zn. Therefore, the result follows.

Theorem 1.10. An irreducible pure jump CTMC is recurrent iff its embedded DTMC is recurrent.

Proof. A regular CTMC is pure jump by definition. Further, a regular CTMC is irreducible iff embedded
DTMC is irreducible from Corollary 1.5. There is nothing to prove for |X| = 1. Hence, we assume |X| ⩾ 2
without loss of generality.

Suppose that the embedded Markov chain Z : Ω → XN is recurrent. Since the embedded chain is
irreducible and recurrent, CTMC has no absorbing states. This implies Nxy(1) and Nx(1) are finite
almost surely, and the random sequence Y (y) : Ω → RN

+ is i.i.d. exponential with rate νy ∈ (0,∞), and

sequences Y (y) are independent for each state y ∈ X. Since the recurrence time τ+x (1) is an a.s. finite
sum of finite random variables, it follows that τ+x (1) is finite almost surely.

Conversely, if the embedded Markov chain is not recurrent, it has a transient state x ∈ X for which
Px {Nx = ∞} > 0. By the same argument, Px {τ+x = ∞} > 0 and hence the CTMC is not recurrent.

Corollary 1.11. Recurrence is a class property.

Theorem 1.12. Consider an irreducible positive recurrent discrete time Markov chain Z : Ω → XZ+

with transition probability matrix p ∈ M(X)X and invariant distribution u ∈ M(X). Then,

uy = lim
N→∞

1

N

N∑
n=1

1{Zn=y} =
ExNxy(k)

ExNx(k)
= uxExNxy(k).

Proof. Let Z0 = x. For a homogeneous Markov chain Z, the random sequence S+
x : Ω → NN is a

renewal sequence, and the number of visits Nx(k) to all states before the kth return to state x is the kth
inter-return time to state x. The number of visits to state y between two successive visits to state x is

Nxy(k) =

S+
x (k)∑

n=S+
x (k−1)+1

1{Zn=y}.

We can consider Nxy(k) as the reward in the kth renewal duration. The result follows from the renewal
reward theorem and the fact that Nxx(k) = 1 for all k ∈ N and x ∈ X.

Theorem 1.13. Consider an irreducible recurrent continuous time Markov chain X : Ω → XR+ with
sojourn time rates ν ∈ RX

+ and transition matrix p ∈ M(X)X for the embedded Markov chain Z : Ω →
XZ+ . Let u ∈ RX

+ be any strictly positive solution of u = up, then for each state x ∈ X

Exτ
+
x (1) =

1

ux

∑
y∈X

uy

νy
. (1)

Further, the process X is positive recurrent iff
∑

x∈X
ux

νx
< ∞.
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Proof. Let X0 = x ∈ X. Recall that Y
(x)
k denotes the kth sojourn time of the Markov process X in state

x, and the random sequence Y (x) : Ω → RN
+ is i.i.d. with common exponential distribution of rate νx.

From Lemma 1.9, the first visit time to state x in terms of Nxy(1) and sojourn times Y
(y)
k for each state

y ∈ X, is τ+x (1) =
∑

y∈X

∑Nxy(1)
k=1 Y

(y)
k . We recall that jump chain Z and sojourn times are independent

given the initial state, and hence Nxy(1) and Y (y) sequences are independent for each state y ̸= x.
From taking expectations on both sides, exchanging summation and expectations by the application of

monotone convergence theorem for positive random variables, we get Exτ
+
x (1) =

∑
y∈X EY (y)

k ExNxy. To

show (1), it suffices to show that ExNxy(k) =
uy

ux
.

The embedded Markov chain Z inherits the irreducibility and recurrence of the Markov process X
from Corollary 1.5 and Theorem 1.10. For irreducible and recurrent Markov chain Z with transition
matrix p and any strictly positive solution to u = up, we have ExNxy(k) =

uy

ux
from Theorem 1.12.

Since u is strictly positive, it follows that Exτ
+
x (1) < ∞ iff

∑
y∈X

uy

νy
< ∞.

Remark 2. For an irreducible regular CTMC X, the embedded Markov chain Z is irreducible and
recurrent. If Z with transition matrix p is positive recurrent, then there exists a strictly positive solution
equilibrium distribution u ∈ M(X) such that u = up. However, it is possible that rates ν ∈ RX

+ ensure
that

∑
y∈X

uy

νy
= ∞, in which case X is null recurrent.

2 Invariant Distribution

Remark 3. For a homogeneous Markov process X : Ω → XR+ with probability transition kernel P :
R+ → M(X)X, we denote the marginal distribution of random variable Xt at time t by ν(t) ∈ M(X),
where for each time t ∈ R+

ν(t) = ν(0)P (t).

In general, we can write ν(s + t) = ν(s)P (t). Hence, if there exists a stationary distribution π ≜
lims→∞ ν(s) for this process X, then we would have π = πP (t) for all times t ∈ R+.

Definition 2.1. A distribution π ∈ M(X) is an invariant distribution of a homogeneous continuous
time Markov chain X : Ω → XR+ with probability transition kernel P : R+ → M(X)X if πP (t) = π for
all t ∈ R+.

Corollary 2.2. For a homogeneous continuous time Markov chain X : Ω → XR+ with generator matrix
Q, a distribution π ∈ M(X) is an equilibrium distribution iff πQ = 0.

Proof. Recall that we can write the transition probability matrix P (t) at any time t ∈ R+ in terms of
generator matrix Q as P (t) = etQ. Using the exponentiation of a matrix, we can write

πP (t) = πetQ = π +
∑
n∈N

tn

n!
πQn, t ∈ R+.

Therefore, πQ = 0 iff π is an equilibrium distribution of the Markov process X.

Theorem 2.3. Let X : Ω → XR+ be an irreducible recurrent homogeneous CTMC with probability
transition kernel P : R+ → M(X)X, the transition rate sequence ν ∈ RX

+, and the transition matrix for
embedded jump chain p ∈ M(X). Then for all states x, y ∈ X the limt→∞ Pxy(t) exists, this limit is
independent of the initial state x ∈ X and denoted by πy. Let u be any strictly positive invariant measure
such that u = up. If

∑
x∈X

ux

νx
= ∞, then πx = 0 for all x ∈ X. If

∑
x∈X

ux

νx
< ∞ then for all y ∈ X,

πy =

uy

νy∑
x∈X

ux

νx

=
ν−1
y

Eyτ
+
y
.

Proof. Fix a state y ∈ X, and define a process W : Ω → {0, 1}R+ such that Wt = 1{Xt=y}. Then, from
the regenerative property of the homogeneous CTMC and renewal reward theorem, we have

lim
t→∞

Px {Xt = y} =
EY (y)

k

Eyτ
+
y (k)

=
ν−1
y

Eyτ
+
y
.
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