
Lecture-05: Reversibility

1 Introduction

Definition 1.1. A stochastic process X : Ω → XR is time reversible if the vector (Xt1 , . . . , Xtn) has the
same distribution as (Xτ−t1 , . . . , Xτ−tn) for all finite positive integers n ∈ N, time instants t1 < t2 <
· · · < tn ∈ R and shifts τ ∈ R.

Lemma 1.2. A time reversible process is stationary.

Proof. It suffices to show that for any shift s ∈ R, finite n ∈ N, and time instants t1 < · · · < tn ∈ R, the
random vectors (Xt1 , . . . , Xtn) and (Xs+t1 , . . . , Xs+tn) have identical distribution regardless of s. This
follows from time reversibility of X, since both (Xt1 , . . . , Xtn) and (Xs+t1 , . . . , Xs+tn) have the same
distribution as (X−t1 , . . . , X−tn), by taking τ = 0 and τ = −s respectively.

Theorem 1.3. A time-homogeneous Markov process X : Ω → XR with countable state space X and
probability transition kernel P : R+ → M(X)X is time reversible iff it is stationary and there exists
π ∈ M(X) that satisfies the detailed balanced conditions for all states x, y ∈ X and times t ∈ R+,

πxPxy(t) = πyPyx(t). (1)

When such a distribution π exists, it is the invariant distribution of the process.

Proof. We assume that the process X is time reversible, and hence stationary. We denote the stationary
distribution by π ∈ M(X), and by time reversibility of X for τ = 2s+ t, we have

Pπ {Xs = x,Xs+t = y} = Pπ {Xs = y,Xs+t = x} .

Hence, we obtain the detailed balanced conditions in Eq. (1).
Conversely, let π be the distribution that satisfies the detailed balanced conditions in Eq. (1), then

summing up both sides over y ∈ X, we see that π is the invariant distribution for Markov process X.
Let x ∈ Xm, then applying detailed balanced equations in Eq. (1) repeatedly, we can write

π(x1)Px1x2(t2 − t1) . . . Pxm−1xm(tm − tm−1) = π(xm)Pxmxm−1(tm − tm−1) . . . Px2x1(t2 − t1).

For the time homogeneous stationary Markov process X, it follows that for all t0 ∈ R+

Pπ

(
∩m
i=1 {Xti = xi}

)
= Pπ

(
∩m
i=1 {Xt0+tm−ti = xi}

)
.

Since m ∈ N and t0, t1, . . . , tm were arbitrary, the time reversibility follows for all τ = t0 + tm.

1.1 Reversible chains

Corollary 1.4. A stationary time-homogeneous discrete time Markov chain X : Ω → XZ with transition
matrix P ∈ M(X)X is time reversible iff there exists π ∈ M(X) that satisfies the detailed balanced
conditions for all states x, y ∈ X,

πxPxy = πyPyx. (2)

When such a distribution π exists, it is the invariant distribution of the process.

Example 1.5 (Random walks on edge-weighted graphs). Consider an undirected graph G =
(X, E) with the vertex set X and the edge set E ⊆

(
X
2

)
being a subset of unordered pairs of elements

from X. We say that y is a neighbor of x, if e = {x, y} ∈ E and denote x ∼ y. We assume a function
w : E → R+, such that we is a positive number associated with each edge e = {x, y} ∈ E. Let Xn ∈ X
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denote the location of a particle on one of the graph vertices at the nth time-step. Consider the following
random discrete time movement of a particle on this graph from one vertex to another. If the particle is
currently at vertex x then it will next move to vertex y with probability

PG
xy ≜ P ({Xn+1 = y} | {Xn = x}) =

w{x,y}∑
e∈E we1e(x)

1E({x, y}).

The Markov chain X : Ω → XN describing the sequence of vertices visited by the particle is a random
walk on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative
importance of webpages, is essentially a random walk on a directed graph!

Proposition 1.6. Consider an irreducible time-homogeneous Markov chain X : Ω → XZ that describes
the random walk on an edge weighted graph with a finite number of vertices. In steady state, this Markov
chain is time reversible with stationary probability of being in a state x ∈ X given by

πx =

∑
e∈E we1e(x)

2
∑

f∈E wf
. (3)

Proof. Using the definition of transition probabilities for this Markov chain and the given distribution
π ∈ M(X) defined in (3), we notice that

πxP
G
xy =

w{x,y}

2
∑

f∈E wf
1E({x, y}), πyP

G
yx =

w{x,y}

2
∑

f∈E wf
1E({x, y}).

Hence, the detailed balance equation for each pair of states x, y ∈ X is satisfied, and the result follows.

We can also show the following dual result.

Lemma 1.7. Consider a time reversible Markov chain X : Ω → XZ on a finite state space X and
transition probability matrix P ∈ M(X)X. Then, there exists a random walk on a weighted, undirected
graph G with the same transition probability matrix P .

Proof. Since X is time reversible, it is stationary and has a positive invariant distribution π ∈ M(X)
such that πxPxy = πyPyx for each (x, y) ∈ X2. This implies that Pxy > 0 iff Pyx > 0, and thus we can
create a graph G = (X, E), where

E ≜

{
{x, y} ∈

(
X

2

)
: PxyPyx > 0

}
.

For each edge {x, y} ∈ E, we set the edge weights w{x,y} ≜ πxPxy = πyPyx. With this choice of weights,

it is easy to check that wx ≜
∑

e∈E we1e(x) = πx, and the transition matrix associated with a random

walk on this graph is exactly P with PG
xy =

w{x,y}
wx

= Pxy.

Is every Markov chain time reversible?
Let X : Ω → XZ be a time homogeneous discrete time Markov chain with probability transition matrix
P ∈ M(X)X.

1. If the process is not stationary, then no. To see this, we observe that

P {Xt1 = x1, Xt2 = x2} = νt1(x1)Px1x2
(t2 − t1), P {Xτ−t2 = x2, Xτ−t1 = x1} = ντ−t2(x2)Px2x1

(t2 − t1).

If the process is not stationary, the two probabilities can’t be equal for all times τ, t1, t2 and states
x1, x2 ∈ X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a stationary
distribution α ∈ M(X) that satisfies the detailed balance equations αxPxy = αyPyx for all states
x, y ∈ X. For any arbitrary Markov chain X, one may not end up getting any solution. To see this
consider a path x → y → z such that PxyPyzPzx > 0. Time reversibility condition implies that

αxPxyPyzPzx = αxPxzPzyPyx.

However, this would imply that
PzyPyx

PxyPyz
= Pzx

Pxz
, which is not true in general. Thus, we see that a

necessary condition for time reversibility is PxyPyzPzx = PxzPzyPyx for all x, y, z ∈ X.
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Theorem 1.8 (Kolmogorov’s criterion for time reversibility of Markov chains). A stationary
Markov chain X : Ω → XZ is time reversible if and only if starting in state x0 ∈ X, any path back to
state x0 has the same probability as the time reversed path, for all initial states x0 ∈ X. That is, for any
n ∈ N and state vector x ∈ Xn

Px0x1
Px1x2

. . . Pxnx0
= Px0xn

Pxnxn−1
. . . Px1x0

. (4)

Proof. The detailed balance equation for a time reversible Markov process X implies that (4) holds for
any finite set of states. Conversely, if (4) holds for any non-negative integer n ∈ N, then for any states
x0, y ∈ X, we have

(Pn+1)x0yPyx0
=

∑
x1,x2,...xn

Px0x1
. . . PxnyPyx0

=
∑

x1,x2,...xn

Px0yPyxn
. . . Px1x0

= Px0y(P
n+1)yx0

.

Taking the limit n → ∞ and noticing that limn→∞(Pn)xy = πy for all x, y ∈ X, we observe that X is a
time-reversible process.

1.2 Reversible Processes

Corollary 1.9. A stationary Markov process X : Ω → XR with generator matrix Q ∈ RX×X is time re-
versible iff there exists a probability distribution π ∈ M(X), that satisfies the detailed balanced conditions

πxQxy = πyQyx, x, y ∈ X. (5)

When such a distribution π exists, it is the invariant distribution of the process.

Definition 1.10. Consider a stationary time-homogeneous Markov process X : Ω → XR with invariant
distribution π ∈ M(X) and the generator matrix Q ∈ RX×X. We denote the total number of transitions
from state x to state y in the time duration (0, t] by

Nxy
t ≜ Nxy(0, t] ≜

∑
n∈N

1(0,t](Sn)1{Zn−1=x,Zn=y}.

The probability flux from state x to state y is defined as Φxy ≜ limt→∞
1
tN

xy
t .

Lemma 1.11. For a time-homogeneous CTMC X, the probability flux from state x to state y is πxQxy.

Proof. Let X0 = x and τ+x (k) be the kth visiting time to state x. It follows that τ+x : Ω → RN
+ is a renewal

sequence. We consider the reward process Nxy : Ω → ZR+

+ where Nxy
t is the number of transitions from

state x to y in the duration (0, t]. We denote the total number of transitions from state x to state y in
the kth inter-renewal duration by

Nxy(k) ≜ Nxy(τ+x (k − 1), τ+x (k)] ≜
∑
n∈N

1(τ+
x (k−1),τ+

x (k)](Sn)1{Zn−1=x,Zn=y}.

The number of visit to all states y ∈ X during kth successive visit to state x ∈ X is the number of
transitions during (τ+x (k−1), τ+x (k)], and we denote this number as Nx(k) ≜

∑
n∈N 1(τ+

x (k−1),τ+
x (k)](Sn).

From the renewal reward theorem for the embedded DTMC Z : Ω → XZ+ with invariant distribution
u ∈ M(X), we can write the average number of one-step transitions from state x to y as

uxpxy = lim
N→∞

1

N

N∑
n=1

1{Zn−1=x,Zn=y} =
ExN

xy(k)

ExNx(k)
= uxExN

xy(k).

It follows that ExN
xy(k) = pxy and recall that Exτ

+
x (1) = 1

πxνx
. From the renewal reward theorem

applied to reward process Nxy and renewal sequence τ+x , we obtain

lim
t→∞

Nxy
t

t
=

ExN
xy(1)

Exτ
+
x (1)

= πxνxpxy = πxQxy.

Lemma 1.12. For a stationary time-homogeneous Markov process X : Ω → XR, probability flux balances
across a cut A ⊆ X, that is ∑

y/∈A

∑
x∈A

πxQxy =
∑
x∈A

∑
y/∈A

πyQyx.
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Proof. Let A ⊆ X, and denote the number of visits from states in A to states in Ac in the interval (0, t]
and probability flux from A → Ac as

NA,Ac

t ≜
∑
y/∈A

∑
x∈A

Nxy
t , ΦA,Ac

=
∑
y/∈A

∑
x∈A

Φxy = lim
t→∞

1

t
NA,Ac

t .

By definition of probability flux across cut A, it suffice to show that
∣∣∣NA,Ac

t −NAc,A
t

∣∣∣ ⩽ 1, which follows

from the observe that the difference NA,Ac

t −NAc,A
t = 1{X0∈A} − 1{Xt /∈A} for any time t ∈ R+.

Corollary 1.13. For A = {x}, the above equation reduces to the full balance equation for state x, i.e.,∑
y:y ̸=x

πxQxy =
∑

y:y ̸=x

πyQyx.

Definition 1.14. A time-homogeneous Markov process X : Ω → ZR+

+ is called a birth-death process
if its generator matrix satisfies Qx,y = 0 for all states x, y ∈ Z such that |y − x| > 1. We define two
non-negative sequences birth and death rates denoted by λ ∈ RZ

+ and µ ∈ RN
+, such that for all n ∈ N

λn ≜ Qn−1,n, µn ≜ Qn,n−1.

Proposition 1.15. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form
A = {0, 1, 2, . . . , n}, for n ∈ Z+. Since there are no other transitions possible across the cut, this is
precisely the set of detailed balance equations πnλn = πn+1µn+1 for each state n ∈ Z+, and hence the
process is time-reversible.

In fact, the following, more general, statement can be proven using similar ideas.

Proposition 1.16. Consider an irreducible and ergodic Markov process X : Ω → XR on a countable
state space X with generator matrix Q ∈ RX×X having the following property. For any pair of states
x ̸= y ∈ X, the transition graph has a unique path x = x0 → x1 → · · · → xn(x,y) = y and y = xn(x,y) →
xn−1 → · · · → x0 = x of distinct states. Then the process X is time reversible at stationarity.

Proof. Let the stationary distribution of X be π ∈ M(X), such that πQ = 0. We fix a state x ∈ X,
and define the set of states connected to x as Bx ≜ {y ∈ X : Qxy > 0}. By theorem hypothesis, for each
y ∈ Bx we have a unique path x → y and y → x, and thus we have Qyx > 0 as well. For any y /∈ Bx,
the detailed balance equation is satisfied trivially for each pair (x, y). Let y ∈ Bx, then we can define

Axy ≜ {z ∈ X : z connected to x via y} .

By definition of Axy, we have a path x → y → z for any z ∈ Axy. From the hypothesis of unique paths,
we have x ∈ Axy. Further, since self transitions are not possible, y /∈ Axy. Since Q is irreducible, each
state x is connected to every other state z ∈ X \ {x}. Therefore, we observe that

Ac
xy = {w ∈ X : w connected to x not via y} .

We observe that x /∈ Ac
xy and y ∈ Ac

xy. Next, we consider a pair of states (z, w) such that z ∈ Axy \ {x}
and w ∈ Ac

xy \ {y}. In this case, if Qzw > 0, then we have two paths x → y → z → w and another path
from x to w without going via y, and that contradicts the hypothesis. It follows that Qzw = Qwz = 0
for all such pairs (z, w). This implies that there are no paths between Axy \ {x} and Ac

xy \ {y}. From
the probability flux balance across cuts, we obtain the detailed balance equation

πxQxy =
∑

w/∈Axy

∑
z∈Axy

πzQzw =
∑

z∈Axy

∑
w/∈Axy

πwQwz = πyQyx.

Since the choice of states x, y ∈ X was arbitrary, the result follows.

Exercise 1.17. Prove Corollary 1.4 and Corollary 1.9 from Theorem 1.3.
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