Lecture-05: Reversibility

1 Introduction

Definition 1.1. A stochastic process X : Q — X¥ is time reversible if the vector (X;,,..., Xy, ) has the
same distribution as (X;_¢,,...,X,—¢,) for all finite positive integers n € N, time instants t; < t3 <
-+» < t, € R and shifts 7 € R.

Lemma 1.2. A time reversible process is stationary.

Proof. Tt suffices to show that for any shift s € R, finite n € N, and time instants t; < --- < t,, € R, the

random vectors (X;,,..., X, ) and (Xst4y,...,Xs+e, ) have identical distribution regardless of s. This
follows from time reversibility of X, since both (Xy,..., X, ) and (Xgy¢,,..., Xstt,) have the same
distribution as (X_¢,,...,X_¢, ), by taking 7 = 0 and 7 = —s respectively. O

Theorem 1.3. A time-homogeneous Markov process X : Q — X® with countable state space X and
probability transition kernel P : Ry — M(X)X is time reversible iff it is stationary and there exists
m € M(X) that satisfies the detailed balanced conditions for all states x,y € X and times t € Ry,

70 Pay (1) = 7, Py (0). (1)
When such a distribution m exists, it is the invariant distribution of the process.

Proof. We assume that the process X is time reversible, and hence stationary. We denote the stationary
distribution by 7 € M(X), and by time reversibility of X for 7 = 2s + ¢, we have

PW{XS:vaSth:y}:Pﬂ{XS:yastrt:x}'

Hence, we obtain the detailed balanced conditions in Eq. .

Conversely, let m be the distribution that satisfies the detailed balanced conditions in Eq. , then
summing up both sides over y € X, we see that 7 is the invariant distribution for Markov process X.
Let x € X™, then applying detailed balanced equations in Eq. repeatedly, we can write

77(1'1)Px1x2 (t2 - tl) oo Pop i, (tm - tm—l) = Tr(xm)mean—l (tm - tM—l) oo Prygy (t2 - tl)-

For the time homogeneous stationary Markov process X, it follows that for all t5 € R

P,T(mg’;l (X, = xi}> - P, ( AP { Xt 1, = x})

Since m € N and tg, t1,...,t,, were arbitrary, the time reversibility follows for all 7 = tg + t,,. O

1.1 Reversible chains

Corollary 1.4. A stationary time-homogeneous discrete time Markov chain X : Q — X% with transition
matriv P € M(X)Y is time reversible iff there ewists 1 € M(X) that satisfies the detailed balanced
conditions for all states x,y € X,

Ty Ppy = Ty Pys. (2)

When such a distribution m exists, it is the invariant distribution of the process.

Example 1.5 (Random walks on edge-weighted graphs). Consider an undirected graph G =
(X, E) with the vertex set X and the edge set E C (DQC) being a subset of unordered pairs of elements
from X. We say that y is a neighbor of z, if e = {z,y} € E and denote & ~ y. We assume a function
w: E — Ry, such that w, is a positive number associated with each edge e = {z,y} € E. Let X,, € X



denote the location of a particle on one of the graph vertices at the nth time-step. Consider the following
random discrete time movement of a particle on this graph from one vertex to another. If the particle is
currently at vertex x then it will next move to vertex y with probability

PS 2 P({Xp1 =y} | {Xn=2}) = %h({x,y}»

The Markov chain X : Q@ — XN describing the sequence of vertices visited by the particle is a random
walk on an undirected edge-weighted graph. Google’s PageRank algorithm, to estimate the relative
importance of webpages, is essentially a random walk on a directed graph!

Proposition 1.6. Consider an irreducible time-homogeneous Markov chain X : Q — X% that describes
the random walk on an edge weighted graph with a finite number of vertices. In steady state, this Markov
chain is time reversible with stationary probability of being in a state x € X given by

ZeEE wele(z)
2 ZfeE wy

Proof. Using the definition of transition probabilities for this Markov chain and the given distribution
T € M(X) defined in (@), we notice that

Ty =

3)

W{z,y} G Wix,y}
WxPzG = ]lE({:c,y}), s Pm = ILE({xvy})
Y QZfewa Y 2Zfewa

Hence, the detailed balance equation for each pair of states =,y € X is satisfied, and the result follows. [
We can also show the following dual result.

Lemma 1.7. Consider a time reversible Markov chain X : Q — X% on a finite state space X and
transition probability matriz P € M(X)X. Then, there exists a random walk on a weighted, undirected
graph G with the same transition probability matriz P.

Proof. Since X is time reversible, it is stationary and has a positive invariant distribution = € M(X)
such that 7, P,y = m, Py, for each (z,y) € X2. This implies that P, > 0iff P, > 0, and thus we can
create a graph G = (X, E), where

E£ {{x7y} € (32C> : Py Py > 0}.

For each edge {z,y} € E, we set the edge weights wy, ,} = Ty Pry = Ty Pye. With this choice of weights,
it is easy to check that w, £ ZeeE wele(x) = 7, and the transition matrix associated with a random

walk on this graph is exactly P with PS = Zew} — p m

Wy zy-

Is every Markov chain time reversible?
Let X : Q — X% be a time homogeneous discrete time Markov chain with probability transition matrix
P e M(X)*.

1. If the process is not stationary, then no. To see this, we observe that

P{Xy, =21, Xy, =22} = 4, (1) Pryas (t2 — t1), P{Xr4, =20, X5, =21} = V74, (22) Ppya, (t2 —

If the process is not stationary, the two probabilities can’t be equal for all times 7, ¢1,t2 and states
r1,T9 € X.

2. If the process is stationary, then it is still not true in general. Suppose we want to find a stationary
distribution o € M(X) that satisfies the detailed balance equations o, Pyy = oy Py, for all states
z,y € X. For any arbitrary Markov chain X, one may not end up getting any solution. To see this
consider a path x — y — z such that P, P,.P,; > 0. Time reversibility condition implies that

However, this would imply that % = 1;;:, which is not true in general. Thus, we see that a

necessary condition for time reversibility is PpyPy. P,z = Py, P,y Py, for all z,y,z € X.



Theorem 1.8 (Kolmogorov’s criterion for time reversibility of Markov chains). A stationary
Markov chain X : Q — X% is time reversible if and only if starting in state xo € X, any path back to
state xo has the same probability as the time reversed path, for all initial states xog € X. That is, for any
n € N and state vector x € X™

PavesPors - Pooy = Pover Ponwn s - Poiao- (4)

Proof. The detailed balance equation for a time reversible Markov process X implies that holds for
any finite set of states. Conversely, if holds for any non-negative integer n € N, then for any states
o,y € X, we have

(Pn+1)woypywo = Proz, - ~PInywao = Pwoywan N N Pwoy(Pn+1)ywo-

T1,X2,...Tp T1,L2,...Tn

Taking the limit n — oo and noticing that lim,, oo (P")sy = 7, for all 2,y € X, we observe that X is a
time-reversible process. O

1.2 Reversible Processes

Corollary 1.9. A stationary Markov process X : Q — X® with generator matriz Q € R**X is time re-
versible iff there exists a probability distribution m € M(X), that satisfies the detailed balanced conditions

WQOy = 7'ryC?ym T,y € X. (5)
When such a distribution 7 exists, it is the invariant distribution of the process.

Definition 1.10. Consider a stationary time-homogeneous Markov process X : Q — X® with invariant
distribution 7 € M(X) and the generator matrix Q@ € R***. We denote the total number of transitions
from state x to state y in the time duration (0, t] by

NV EN(0,6) 2 1(0,0(Sn) (2,1 =a,2,~y}-
neN

The probability fluz from state  to state y is defined as @4y £ limy_,o0 1N/,
Lemma 1.11. For a time-homogeneous CTMC X, the probability flux from state x to state y is Tz Quy.

Proof. Let X = x and 7,7 (k) be the kth visiting time to state . It follows that 7,7 : @ — RY is a renewal
sequence. We consider the reward process N*¥ : Q) — ZE* where N;Y is the number of transitions from
state z to y in the duration (0,¢]. We denote the total number of transitions from state z to state y in
the kth inter-renewal duration by

N*(k) 2 ny(ng_(k - 1)77;(]@] 2 Z ]l(T;r(k_n,T;(k)](Sn)]l{anlzm,Zn:y}'
neN
The number of visit to all states y € X during kth successive visit to state x € X is the number of
transitions during (7,7 (k — 1), 7,7 (k)], and we denote this number as N*(k) £ 3", Lo (o) mt ()] (Sn)-
From the renewal reward theorem for the embedded DTMC Z : Q — X%+ with invariant distribution
u € M(X), we can write the average number of one-step transitions from state z to y as

N
, 1 E,.N®Y(k) "
UgPay = ngnoo N Z IL{Zn—lzfﬂ,Zn:y} = m =u E, N y(k)
n=1 x
It follows that E,N*Y(k) = p,, and recall that E, 7,7 (1) = leyx. From the renewal reward theorem

applied to reward process N*¥ and renewal sequence 7,7, we obtain

N E, N (1
lim —t— = - (1)
t—oo Em'rw (1)

= TxVgPzy = WQOy'

O

Lemma 1.12. For a stationary time-homogeneous Markov process X : Q — X®, probability flux balances

across a cut A C X, that is
Z Z Mo Quy = Z Z Ty Qya-

ygAxcA r€EAygA



Proof. Let A C X, and denote the number of visits from states in A to states in A° in the interval (0, ¢]
and probability flux from A — A° as

N E S SN, B 35 0, = fim N

y¢Ax€A y¢Ax€A

By definition of probability flux across cut A, it suffice to show that ‘NtA A NtA Al g 1, which follows

from the observe that the difference NtA’AC — NtAC’A = lyx,eay — Lix,¢a) for any time ¢t € R. O

Corollary 1.13. For A = {z}, the above equation reduces to the full balance equation for state x, i.e.,

Z 7Tszy = Z 7TyQy:v

yiyF£ yiyF£T

Definition 1.14. A time-homogeneous Markov process X : ) — ZE* is called a birth-death process
if its generator matrix satisfies Q. , = 0 for all states x,y € Z such that |y — x| > 1. We define two
non-negative sequences birth and death rates denoted by A € R_ZF and p € RI}I_, such that for all n € N

)\n £ Qn—l,na Hn £ Qn,n—1~
Proposition 1.15. An ergodic birth-death process in steady-state is time-reversible.

Proof. Since the process is stationary, the probability flux must balance across any cut of the form

A =1{0,1,2,...,n}, for n € Z,. Since there are no other transitions possible across the cut, this is
precisely the set of detailed balance equations m, A\, = m,41pn+1 for each state n € Z,, and hence the
process is time-reversible. O

In fact, the following, more general, statement can be proven using similar ideas.

Proposition 1.16. Consider an irreducible and ergodic Markov process X : Q — X® on a countable
state space X with generator matriz Q € RY*X having the following property. For any pair of states
x #y € X, the transition graph has a unique path © = xg — X1 =+ = Tpzy) =Y ANd Y = Tp(zy) —
Tp_1 — -+ — xg = x of distinct states. Then the process X is time reversible at stationarity.

Proof. Let the stationary distribution of X be 7 € M(X), such that 7Q) = 0. We fix a state z € X,
and define the set of states connected to x as B, = {y € X : Q,, > 0}. By theorem hypothesis, for each
y € B, we have a unique path * — y and y — =z, and thus we have Q,, > 0 as well. For any y ¢ B,,
the detailed balance equation is satisfied trivially for each pair (z,y). Let y € B,, then we can define

Ay = {2 € X : 2 connected to x via y}.

By definition of A,,, we have a path x — y — 2 for any z € A,,. From the hypothesis of unique paths,
we have x € Ag,. Further, since self transitions are not possible, y ¢ A,,. Since @ is irreducible, each
state z is connected to every other state z € X\ {x}. Therefore, we observe that

A3, = {w € X : w connected to  not via y} .

We observe that x ¢ A7 and y € Ag, . Next, we consider a pair of states (2, w) such that z € Ay, \ {z}
and w € A7\ {y}. In this case, if Q.,, > 0, then we have two paths © — y — 2z — w and another path
from x to w without going via y, and that contradicts the hypothesis. It follows that Q.,, = Q.. = 0
for all such pairs (z,w). This implies that there are no paths between Ay, \ {z} and Ag, \ {y}. From
the probability flux balance across cuts, we obtain the detailed balance equation

ﬂ.way = Z Z Wzsz = Z Z 7Twc2wz = 7Tyc?y:r

wEAzy 2€Azy 2€Azy WEAzy

Since the choice of states z,y € X was arbitrary, the result follows. O

Exercise 1.17. Prove Corollary [T.4] and Corollary [1.9] from Theorem
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