Lecture-05: PDS Kernels

1 Kernel Methods

Kernel methods are extensions of SVMs to define non-linear decision boundaries, and can also be used for other
algorithms that depend solely on inner products between sample points. Kernel functions map the data to higher
dimensional space. Under symmetry and positive definiteness of these kernel functions, we can define inner
product in this high dimensional space. A linear separation in this high dimensional space is non-linear separation
in the original space.

Example 1.1 (Document classification). Let X be the set of words in a document, which has a typical size of
|X| = 10° words. Classifying the document into different types based on single words (elements from the set X)
will be difficult because many types of documents will share the same words. A better way to classify documents
is to look for patterns in groups of adjacent words. For example, consider X3, which is the set of trigrams (triplets
of words). Classifying documents in the space of trigrams will yield better results despite the increased size of the
space |X3| = 1013,

Remark 1. The complexity of linear separation algorithm like SVM doesn’t depend on the dimension of the space,

rather on the margin p. However, the higher dimension inner product may become costly.

Definition 1.2 (Kernels). For the input space X, we let the non-linear map ® : X — H be a feature mapping that
takes feature vectors to a higher dimensional space Hilbert H called a feature space. A function K : X x X — R
is called a kernel over X. For this mapping ®, we define a kernel K by the inner product in the space H, such that

K(x,x') = (®(x),®(x) )y, forall x,x" € X.

Remark 2. The inner product (-,-) is similarity measure between two feature vectors in the feature space H. The
kernel K is a similarity measure between elements of the input space X.

Example 1.3 (Polynomial kernel). For ¢ > 0 and degree d € N, we define a kernel
K(x,x') £ ((x,x') +¢)?, forallx,x' € X CRN.

For N =2 and d =2, we see that @ : X — H given by ®(x) = [x¥ x5 V2xix2 V2exi V2cxa ] suffices
to give us K (x,x’) = (®(x),®(x))g for all x,x’ € R2. For general N and d, can you find the dimension of H for
the @ : X — H corresponding to the Kernel function?

Example 1.4. Consider the following classification problem shown in Figure[I] where the red and the blue points
must be separated by a hyperplane. This is not possible in the space R? since there is no hyperplane that can
separate the blue and red points. However, when we use the function A (x;,x2) = x1x; to bring these points to a
higher-dimensional space, we find that these points are indeed separable along the xjx, dimension.
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Figure 1: Left: Four points from two classes plotted on the x1,x; axes. These points are not separable by any
hyperplane. Right: The same four points are plotted on the v/2x;x> and v/2cx| axes. These points are now
separable.



Remark 3. Why do we work with kernels?

* Efficiency: Inner product in higher dimensional space is equal to the computation of kernel function in the
input space. Computation in the input space X is more efficient than computation in the feature space H
because dim(H) >> dim(X) and (x,y) = O(dim(X)).

* Flexibility: There is no need to explicitly define the map & but its existence is guaranteed if K satisfies
Mercer’s condition.

2 PDS Kernels

Theorem 2.1 (Mercer’s condition). Let X C RN be a compact set and let K : X x X — R be a continuous and
symmetric function. Then, the kernel K admits a uniformly convergent expansion of the form

¥) = ioamn(xmn(x/)

with a, > 0 iff for any square integrable function ¢ € Ly(x), the following condition holds

//Dfo)C c(x)e(x)K (x,x")dxdx' > 0.

This is the positive semi-definiteness condition on the kernel K.

This condition is important to guarantee the convexity of the optimization problem for algorithms such as
SVMs and thus convergence guarantees. A condition that is equivalent to Mercer’s condition under the assump-
tions of the theorem is that the kernel K be positive definite symmetric (PDS). This property is in fact more
general since in particular it does not require any assumption about X.

Definition 2.2 (Gram matrix). For a sample x € X", the kernel matrix or the Gram matrix associated to the
kernel K and the sample x is denoted by K € R"™*" and given by

K(xl,xl) K(xl,xm)

K(xm,x1) .. K(Xm,Xm)
Definition 2.3 (PDS kernels). A kernel K : X x X’ — R is said to be positive definite symmetric (PDS) if for any
x € X™, the Gram matrix K = [K(x;,x;)];; € R™*™ is symmetric positive semi-definite (SPSD).

Remark 4. The matrix K is SPSD if it is
(i) symmetric, i.e. K;; =Kj;,
(ii) positive semi-definite: for any column vector ¢ € R”, we have ¢/ Kc > 0.

Example 2.4 (Inner product). Consider kernel K : X x X — R defined by the inner product K (x,y) £ (x,y)
for all x,y € X. For any unlabeled training sample x € X", we denote the corresponding gram matrix by K.
We observe that K is symmetric, since the inner product is symmetric. That is,

Kij = (xixj) = (xj,x) =K.
Further, we observe that K is positive semi definite, since for any ¢ € R”, we have
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Since the gram matrix K is SPSD for any sample x, it follows that the kernel K is PDS.

Definition 2.5 (Normalized kernels). To any kernel K : X x X — R, we can associate a normalized kernel
K': X x X — R defined for all x,y € X by

K'(x,y) = { VEEOIKGD)'



Remark 5. For any x € X such that K(x,x) # 0, we have K’(x,x) = 1. For any PDS kernel, we have |[K'| < 1

Example 2.6 (Gaussian kernel). For o > 0, let K : X x X — R be defined as K(x,y) = exp (%—?) The

normalized kernel associated with this kernel is the Gaussian kernel K’ : X x X — R with parameter ¢ > 0,
defined for all x,y € X as

2
K523) =exp (50320 [P = o17)) = exp (- =3 ) -

Lemma 2.7 (Normalized PDS kernels). Let K be a PDS kernel. Then, the normalized kernel K' associated to K
is PDS.

Proof. Consider an m-sized unlabeled training sample x € X™. We will show that the gram matrix K’ generated
by the sample x and kernel K’ is SPSD. Symmetry of K’ follows from the symmetry of K, and hence the gram
matrix K’ is symmetric. To see the positive semi-definiteness of the gram matrix K', we note that its (i, j)-th entry

- (@) @0x1)) m TKe= || et ?
Ki; = K'(xi,x}) = I Hence, for any vector ¢ € R", we have ¢! K'e = ||\ YL cipgroir— T |l = 0 O

3 Closure Properties

Definition 3.1 (Tensor product). The tensor product of two kernels K, K> is denoted by K| ® K> : X* — R and
defined as (K; ® K2)(x1,%2,y1,y2) = K1 (x1,y1)K2(x2,y2) for all x1,y1,x2,y2 € X.

Theorem 3.2 (Closure properties of PDS kernels). PDS kernels are closed under sum, product, tensor product,
point-wise limit, and composition with a power series Y.,._ a,x" with a, > 0 for all n € N.

Proof. Let (K, : n € N) be a sequence of PDS kernels on R**% and let K, be the gram matrix generated by a
sample x € X for the kernel K, for each n € N.

(i) It suffices to show that K; + K, is SPSD. Since K;,K, are SPSD, it follows that K; 4+ Kj is symmetric.
From the linearity of inner products and positive semi definiteness of K;,K,, we have (¢, (K; +Kj)c) =
(¢,Kic) + (¢, Kyc) = 0 for any ¢ € R™.

(ii) It suffices to show that the matrix K;; = [(K{);;(K2);;] is SPSD. Symmetry follows from the symmetry of
SPSD matrices K; and K».

Since K is SPSD, we have K; = MM by singular value decomposition or Cholesky decomposition. There-
fore, (K1);;(K2)ij = Li-; MM 1 (K3);; and hence for any ¢ € R”, we can write

m m m
Z CiCj ZMtkM/k)(KZ ij = Z Z ciMj (KZ)z](CjM/k)
i,j=1 k=1i,j=1

Defining z; = (¢;My : i € [m]), we see that ' Ke =Y} | 21 Koz = 0.

(iii) The tensor product of two kernels K, K, can be thought of as the product of two PDS kernels
(1,22, y1,¥2) = Ky (x1,31), (x1,%2,y1,¥2) = Ka(x2,y2).

(iv) Let K be the point-wise limit of the sequence of PDS kernels (K, : n € N). Let K be the gram matrix
generated by the map K and the sample x € X™. Symmetry of K follows from the symmetry of each K,,.
From the continuity of inner products, we have (c,Kc) = lim, (¢,K,¢) > 0 for any ¢ € R™.

(v) Let’s assume that K is a PDS kernel with |K (x,y)| < p for all x,y € X, and let f : x — Y anx", be a power
series with a, > 0 and radius of convergence p. Then, for any n € N, both K" and thus a,K" are PDS by
closure under product. For any N € N, the sum ¥¥_,a,K" is PDS by closure under sum of PDS kernels
(a,K" :n > 0) and f oK is PDS by closure under the limit of ZZV:O a,K" as N — oo,

O



Example 3.3 (Gaussian kernel). For any ¢ > 0, a Gaussian kernel is defined as K : X x X — R such that

—|lx—x|P?

K(x,x') £ exp ( o ) , for all x,x’ € X.

This is a PDS kernel derived by normalization of the following kernel

/ =S 1 / n
K'(x,x) = exp <<xc,r)§>> = Z ((x,x)) , for all x,x" € X.

1 2
a=n! o

Example 3.4 (Sigmoid kernel). For any a,b > 0, a Sigmoid kernel is defined as K : X x X — R such that
K(x,x') £ tanh(a (x,x") +b).
This kernel is used in sigmoid perceptrons in neural networks due to its similarity to the sign function.

Example 3.5 (Gaussian kernels). For any PDS kernel K, the kernel exp(K) is also PDS since it can be written
as a power series with an infinite radius of convergence. We can check that a kernel K : X x X — R defined

by K(x,y) = (x,y) for all x,y € X is PDS kernel, and hence K’ = exp(K) defined by K'(x,y) = exp (<’;—g>) for

all x,y € X is PDS kernel. Therefore, the Gaussian kernel is PDS since it is normalized kernel of K'.
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