
Lecture-06: Reproducing Kernel Hilbert Space (RKHS)

1 Reproducing Kernel Hilbert Space (RKHS)
Lemma 1.1 (Cauchy-Schwarz inequality for PDS kernel). Let K be a PDS kernel. Then

K2(x,x′)6 K(x,x)K(x′,x′) for all x,x′ ∈ X.

Proof. We can write the following Gram matrix for samples x,x′ and PDS kernel K as

K =

[
K(x,x) K(x,x′)
K(x′,x) K(x′,x′)

]
.

Since K is a PDS Kernel, the Gram matrix K is symmetric and positive semi-definite. In particular, K(x,x′) =
K(x′,x) and the det(K)> 0. Hence, the result follows.

Definition 1.2. For any PDS kernel K : X×X→ R, we can define a kernel evaluation map Φx : X→ R at a point
x ∈ X by Φx(y), K(x,y) for all y ∈ X.

Definition 1.3. We can define a pre-Hilbert space H0 as the span of kernel evaluations at finitely many elements
of X. That is,

H0 ,

{
∑
i∈I

aiΦxi : I finite ,a ∈ RI ,x ∈ XI

}
⊆ RX.

The completion of H0 is a complete Hilbert space denoted by H.

Theorem 1.4 (RKHS). Let K : X×X→R be a PDS kernel. Then, there exists a Hilbert space H and a mapping
Φ : X→H such that for all x,x′ ∈ X,

K(x,x′) =
〈
Φ(x),Φ(x′)

〉
H .

Furthermore, H has the following reproducing property, for all h ∈H and x ∈ X,

h(x) = 〈(h(·),K(x, ·)〉H .

The Hilbert space H is called the RKHS associated with the kernel K.

Remark 1. We make the following observations from the Theorem statement.

1. The Hilbert space H⊆ RX.

2. For any x ∈ X, we have K(x, ·) ∈H.

Proof. For any x ∈ X, define Φx : X→ R such that Φx(x′) = K(x,x′). Then, we define a map 〈·, ·〉 : H0×H0→ R
such that fo f = ∑i∈I aiΦxi and g = ∑ j∈J b jΦx j , we have

〈 f ,g〉H0
, ∑

i∈I
∑
j∈J

aib jK(xi,x j) = ∑
j∈J

b j f (x j) = ∑
i∈I

aig(xi).

We can verify that the 〈·, ·〉 : H0×H0→ R has the follow properties.

1. Symmetry: By definition, 〈·, ·〉 is symmetric.

2. Bilinearity: 〈·, ·〉 is bilinear. Can you show that 〈α f +βh,g〉= α 〈 f ,g〉+β 〈 f ,g〉?

3. Positive semi-definiteness: For any f ∈ H0, we have f = ∑i∈I aiΦxi and since the Gram matrix K is sym-
metric and positive semidefinite for kernel K and samples S = (xi : i ∈ I), we have

〈 f , f 〉= ∑
i∈I

∑
j∈I

aia jK(xi,x j) = aT Ka > 0.
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4. Reproducing property: Let f ∈H0 and f = ∑i∈I aiΦxi . Then,

〈 f ,Φx〉= ∑
i∈I

aiK(xi,x) = ∑
i∈I

aiΦxi(x) = f (x).

5. Definiteness: We will show that for any f ∈ H0 and x ∈ X, we have bounded f (x). From the reproducing
property, it suffices to show that 〈 f ,Φx〉2 6 〈 f , f 〉〈Φx,Φx〉 for any x ∈ X. Can you show that 〈·, ·〉 is a PDS
kernel? Then the result will follow from Lemma 1.1.

From properties 1,2,3,5, it follows that H0 is a pre-Hilbert space which can be made complete to form the Hilbert
space H=H0, where H0 is dense in H. This Hilbert space H is the RKHS associated with the kernel K.

1.1 Representer theorem
Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combination of the
functions K(xi, ·), where xi is a sample point. The following theorem known as the representer theorem shows
that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs
with no offset.

Theorem 1.5 (Representer theorem). Let K : X×X→R be a PDS kernel and H its corresponding RKHS. Then
for any non decreasing function G : R→ R and any loss function L : Rm→ R∪{+∞} , the optimization problem

argmin
h∈H

F(h) = argmin
h∈H

G(‖h‖H)+L(h(x1), . . . ,h(xm)),

has a solution of the form h∗ = ∑
m
i=1 αiK(xi, ·). If G is strictly increasing, then any solution has this form.

Proof. Let H1 = span(K(xi, ·) : i ∈ [m]). We can write the RKHS H as the direct sum of span of H1 and the
orthogonal space H⊥1 , i.e. H=H1⊕H⊥1 . Hence, any hypothesis h ∈H, can be written as h = h1 +h⊥1 . Since G is
non-decreasing

G(‖h1‖H)6 G(

√
‖h1‖2

H+
∥∥h⊥1

∥∥2
H) = G(‖h‖H).

By the reproducing property, we have for all i ∈ [m]

h(xi) = 〈h,K(xi, ·)〉= 〈h1,K(xi, ·)〉= h1(xi).

Therefore, L(h(x1), . . . ,h(xm)) = L(h1(x1), . . . ,h1(xm)), and hence F(h1)6 F(h). If G is strictly increasing, then
F(h1)< F(h) when

∥∥h⊥1
∥∥
H > 0 and any solution of the optimization problem must be in H1.

2 Empirical Kernel Map
Advantages of working with kernel is that no explicit definition of a feature map Φ is needed. Following are the
advantages of working with explicit feature map Φ.

(i) For primal method in various optimization problems.
(ii) To derive an approximation based on Φ.

(iii) Theoretical analysis where Φ is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample x ∈ Xm and a PDS kernel K, the
associated empirical kernel map Φ : X→ Rm is a feature mapping defined for all y ∈ X by

Φ(y) =

K(y,x1)
...

K(y,xm)

 .
Remark 2. The empirical kernel map evaluated at a point y ∈ X is the vector of K-similarity measure of y with
each of the m training points.

Remark 3. For any i ∈ [m], we have Φ(xi) = Kei, where ei is the i-th unit vector. Hence,
〈
Kei,Ke j

〉
=
〈
ei,K2e j

〉
.

That is, the kernel matrix associated with the empirical kernel map Φ is K2.

Definition 2.2. Let K† denote the pseudo-inverse of the gram matrix K and let (K†)
1
2 denote the SPSD matrix

whose square is K†. We define a feature map Ψ : X×X→ R using the empirical kernel map Φ and the matrix
(K†)

1
2 as

Ψ(x) = (K†)
1
2 , for all x ∈ X.
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Remark 4. Using the identity KK†K = K, we see that〈
Ψ(xi),Ψ(x j)

〉
=
〈
(K†)

1
2 Φ(xi),(K†)

1
2 Φ(x j)

〉
=
〈
Kei,K†Ke j

〉
=
〈
ei,Ke j

〉
.

Thus, the kernel matrix associated to map Ψ is K.

Remark 5. For the feature mapping Ω : X→ Rm defined by Ω(x) = K†Φ(x) for all x ∈ X, we check that the〈
Ω(xi),Ω(x j)

〉
=
〈
K†

Φ(xi),K†
Φ(x j)

〉
=
〈
Kei,K†e j

〉
=
〈
ei,KK†e j

〉
.

Thus, the kernel matrix associated to map Ω is KK†.

3 Kernel-based algorithms
We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature mapping
Φ. Recall that K(y,z) = 〈Φ(y),Φ(z)〉H for all y,z ∈ X, and hence the gram matrix K generated by the kernel map
K and the unlabeled training sample x ∈ Xm suffices to describe the SVM solution completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors x,y ∈ Rm as x ◦ y ∈ Rm such
that (x◦ y)i = xiyi for all i ∈ [m].

Remark 6. We can write the dual problem for non-separable training data in this high dimensional space H as

max
α

1T
α− 1

2
(α ◦ y)T K(α ◦ y)

subject to: 0 6 α 6C and α
T y = 0.

The solution hypothesis h can be written as h(x) = sign(∑m
i=1 αiyiK(xi,x)+b) , where b = yi− (α ◦y)T Kei for all

xi such that 0 < αi <C.
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