Lecture-06: Reproducing Kernel Hilbert Space (RKHS)

1 Reproducing Kernel Hilbert Space (RKHS)

Lemma 1.1 (Cauchy-Schwarz inequality for PDS kernel). Let K be a PDS kernel. Then
K2 (x,x') < K(x,x)K(x',x') for all x,x' € X.

Proof. We can write the following Gram matrix for samples x,x” and PDS kernel K as

K(x,x) K(x,x)

K= K(x',x) K@,x)|"

Since K is a PDS Kernel, the Gram matrix K is symmetric and positive semi-definite. In particular, K (x,x') =
K(x',x) and the det(K) > 0. Hence, the result follows. O

Definition 1.2. For any PDS kernel K : X x X — R, we can define a kernel evaluation map &, : X — R at a point
x € X by @,(y) 2 K(x,y) forall y € X.

Definition 1.3. We can define a pre-Hilbert space Hj as the span of kernel evaluations at finitely many elements
of X. That is,

H, £ Za,-@xi -1 finite ,a e R!,x e X' } C RY.
icl
The completion of Hj is a complete Hilbert space denoted by H.

Theorem 1.4 (RKHS). Let K : X X X — R be a PDS kernel. Then, there exists a Hilbert space H and a mapping
@ : X — H such that for all x,x' € X,

K(x,x') = (@(x), @(x) )y -

Furthermore, H has the following reproducing property, for all h € H and x € X,

The Hilbert space H is called the RKHS associated with the kernel K.
Remark 1. We make the following observations from the Theorem statement.
1. The Hilbert space H C RY,
2. For any x € X, we have K (x,-) € H.
Proof. For any x € X, define @, : X — R such that ®,(x') = K(x,x"). Then, we define a map (-,-) : Ho x Hp — R
such that fo f = }c;a;®Py, and g =} je; bjPy;, we have

(f:&)m, =Y, Y aibiK(xi,x;) = Y bif(x;) = Y aig(x).

i€l jeJ jer i€l
We can verify that the (-,-) : Hy x Hy — R has the follow properties.
1. Symmetry: By definition, (-,-) is symmetric.
2. Bilinearity: (-,-) is bilinear. Can you show that (a.f + Bh,g) = a (f,g)+ B {f,g)?

3. Positive semi-definiteness: For any f € Hy, we have f = };;a;®,, and since the Gram matrix K is sym-
metric and positive semidefinite for kernel K and samples S = (x; : i € I), we have

(ff)= ZzaiajK(xi,xj) =a"Ka>0.

icl jel



4. Reproducing property: Let f € Ho and f =} ;c; a;P,,. Then,
(f,@x) = Y aiK (xi,x) = ) aiy, (x) = f(x).

iel i€l

5. Definiteness: We will show that for any f € Hy and x € X, we have bounded f(x). From the reproducing
property, it suffices to show that (f,®,)> < (f, f) (®x, ®y) for any x € X. Can you show that (-,-) is a PDS
kernel? Then the result will follow from Lemmal[T.1l

From properties 1,2,3,5, it follows that H is a pre-Hilbert space which can be made complete to form the Hilbert
space H = Hly, where Hj is dense in H. This Hilbert space H is the RKHS associated with the kernel K. O

1.1 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combination of the
functions K(x;,-), where x; is a sample point. The following theorem known as the representer theorem shows
that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs
with no offset.

Theorem 1.5 (Representer theorem). Let K : X X X — R be a PDS kernel and H its corresponding RKHS. Then
Sor any non decreasing function G : R — R and any loss function L : R™ — RU {+eo} , the optimization problem

inF(h) = inG(||h L(h(x1), ..., h(xn)),
argmin F () = argmin G(|hl) + L(h(x1).....h(x,)

has a solution of the form h* =Y ' | 0K (x;,-). If G is strictly increasing, then any solution has this form.

Proof. Let H| = span(K(x;,-) : i € [m]). We can write the RKHS H as the direct sum of span of H; and the
orthogonal space Hy, i.e. H = H; @ Hj . Hence, any hypothesis / € H, can be written as h = hy + h{ . Since G is

non-decreasing
2
Gl ) < GQ/ 1A% + || [) = GlIRl)-

By the reproducing property, we have for all i € [m]
h(xi) = (b, K (xi,-)) = (b1, K (xi,-)) = i (xi).

Therefore, L(h(x1),...,h(xm)) = L(h1(x1),...,h1(xy)), and hence F(h;) < F(h). If G is strictly increasing, then
F(hy) < F(h) when ||h{||;; > 0 and any solution of the optimization problem must be in Hj. O

2 Empirical Kernel Map

Advantages of working with kernel is that no explicit definition of a feature map ® is needed. Following are the
advantages of working with explicit feature map .

(i) For primal method in various optimization problems.

(i1) To derive an approximation based on ®.
(iii) Theoretical analysis where ® is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample x € X™ and a PDS kernel K, the
associated empirical kernel map @ : X — R™ is a feature mapping defined for all y € X by

K(y,x1)
D)=
K(y,%m)

Remark 2. The empirical kernel map evaluated at a point y € X is the vector of K-similarity measure of y with
each of the m training points.

Remark 3. For any i € [m], we have ®(x;) = Ke;, where ¢; is the i-th unit vector. Hence, <Kei, Kej> = <e,~, Kzej> .
That is, the kernel matrix associated with the empirical kernel map ® is K?.

Definition 2.2. Let K" denote the pseudo-inverse of the gram matrix K and let (K*)% denote the SPSD matrix
whose square is K. We define a feature map ¥ : XX x X — R using the empirical kernel map & and the matrix

(K)Z as
Y(x) = (KT)%, for all x € X.



Remark 4. Using the identity KK'K = K, we see that

1

(W), %) = (KHI®(x), (K 2@(x)) ) = (Kei, K'Ke;) = (e, Ke;)
Thus, the kernel matrix associated to map ¥ is K.
Remark 5. For the feature mapping Q : X — R™ defined by Q(x) = K'®(x) for all x € X, we check that the
(90),0(x5)) = (K'() K D(xy)) = (Ker,Kle) = (er,KK ;).

Thus, the kernel matrix associated to map € is KK'.

3 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature mapping
®. Recall that K(y,z) = (®(y),P(z))y for all y,z € X, and hence the gram matrix K generated by the kernel map
K and the unlabeled training sample x € X suffices to describe the SVM solution completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors x,y € R” as xoy € R” such
that (xoy); = x;y; for all i € [m].

Remark 6. We can write the dual problem for non-separable training data in this high dimensional space H as
1
max1” o — 5@ 0y)TK(aoy)
o
subject to: 0 < o < C and aTy =0.

The solution hypothesis / can be written as i (x) = sign (Y7, 04y;K (xi,x) +b) , where b = y; — (o y)? Ke; for all
x; such that 0 < o; < C.
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