Lecture-08: Rademacher Complexity

1 Introduction

PAC learning guarantees were for finite hypothesis sets. However typical hypothesis sets in machine learning
problems are infinite, e.g. set of all hyperplanes in SVM. We will generalize existing results and derive general
learning guarantees for infinite hypothesis sets.

We will reduce the infinite hypothesis set to a finite set depending on the notion of complexity. First notion
is Rademacher complexity, which is difficult to compute empirically for many hypothesis sets. We then study
combinatorial notions of complexity, growth function and the VC-dimension. We relate Rademacher complexity
to growth function, and then bound the growth function by the VC-dimension, which are easy to bound or compute
in many cases.

2 Rademacher complexity

Consider a hypothesis set H C YX and loss function L: Y x Y — R. Let Z = X x Y, then for each hypothesis
h € H, we can associate a function g : Z — R such that g(x,y) = L(h(x),y) which captures the corresponding loss
L. The family of loss function associated to hypothesis set H is defined as

G= {g e R® : g(x,y) = L(h(x),y) forall (x,y) € X x Y,h € H}.
The Rademacher complexity captures the richness of a family of functions by measuring the degree to which a
hypothesis set can fit random noise.

Definition 2.1 (Rademacher random variable). A uniform random variable X : Q — {—1,1} is called a Rademacher
random variable.

For any g € G and m-sized sample z € 2", we denote by g. = (g(z1),...,8(zn)) € R™.

Definition 2.2 (Empirical Rademacher complexity). Let G C [a,b]* be a family of functions and a fixed labeled
sample z = (z1,...,zm) € Z™ of size m. Then, the empirical Rademacher complexity of G with respect to the
labeled sample z is defined as
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where 6 : Q — {—1,1}", is an m-length vector of independent Rademacher variables.

Remark 1. The inner product (0, g;) measures the correlation of g, with random noise &, and the supremum over
all g € G measures how well the hypothesis class H correlates with ¢ over the labeled sample z. This is a measure
of richness/complexity of class G, since richer families can generate more g, and better correlate with random
noise on average.

Definition 2.3 (Rademacher complexity). Let D be the unknown fixed distribution according to which labeled
sample z € Z™ is drawn in an i.i.d. fashion. For any m € N, the Rademacher complexity of a family of loss
functions G is mean of empirical Rademacher complexity for sample z, and denoted by

Rin(G) £ ER.(G).

Lemma 2.4. Let G C [0,1]% be a family of functions. Then, for any § > 0, with probability at least 1 — g

R, (G) < RAG In§
m(G) <R (G)+ D

Proof. We observe that E@Z(G), and that R satisfies the bounded difference property with bounding vector %1.
The result follows from the McDiarmid’s inequality. O



Theorem 2.5. Let G C [0, 1]7” be a family of functions. Then, for any & > 0, with probability at least 1 — 8, both
the inequalities hold for all g € G
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Proof. For any labeled sample z € Z™ and loss function g € G, we denote the empirical average of g over labeled

sample z as
A 1
E,[g] = m (1,g)-

We consider the following function ® : Z" — R,

®(z) £ sup(Eg — . [g]).
geG

Consider two samples z, 7' differing at a single example z,, in z and z},, in Z’. Then, we can write
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Similarly, we can obtain ®(z) — () < . Hence, the function @ has the bounded difference property with

bounding vector %1. By McDiarmid’s inequality, for any 6 > 0, with probability at least 1 — g, we have

We next bound the mean of the ®(z) by the difference of empirical average for samples z,7’, sampled i.i.d. from
the fixed unknown distribution D, by applying the Jensen’s inequality to convex function supremum. We get
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Since z,7 are i.i.d. , the inner product (0, g — g.) for i.i.d. Rademacher vector ¢ € {—1,1}" has same distribution

E®(z) =E

as (1,8, — g). Therefore, we have
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Lemma 2.6. Let Y = {—1,1} and Z = X x Y, and the hypothesis set H C Y* be a family of functions and let G

be the family of loss functions associated to the hypothesis set H for the zero-one loss, i.e.
G= {(x,y) = ]l{h(x)yéy} the H} .

For any labeled sample z € Z™, let x = 7o denote its projection over X, i.e. x = (x1,...,Xp) € X™. Then,

lfyth(xz) Therefore,

Proof. For any sample z = ((x;,y;) € X x Y :i € [m]) where J = {—1,1}, we have 1((,,)2y,} =

1 —yih(x;)

we can write
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Since Y7 | 0; remains constant for all & € H and its mean is zero, we can ignore this term. Further, 6oy = (0;y; €

Y :i € [m]) has same distribution as 6 = (0; € Y : i € [m]), and therefore

] ~1g [sup . <o7h(x)>] - 3.
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Theorem 2.7 (Rademacher complexity bounds — binary classification). Let H C XY be a family of functions
forY={—1,41} and let D be the fixed and unknown distribution over the input space X. Then, for any 6 > 0,
with probability at least 1 — & over a sample 7 € Z™ of size m drawn 1.i.d. according to D, each of the following
holds for any hypothesis h € H
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Proof. The result follow from Theorem [2.5]and Lemma 2.6 O

Remark 2. The second learning bound is data dependent, and very useful if we can efficiently compute the empir-
ical Rademacher complexity Rg(H). Since o and —o have the same distribution, we get

Rs(H)=E [sup 1 (—G,h@} =-E {inf 1 (G,hs)] .
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for a fixed value of o, computing infj,cy % (0, hg) is equivalent to an empirical risk minimization problem, which
is known to be computationally hard for some hypothesis sets.

A McDiarmid’s inequality

Definition A.1 (Martingale difference). A sequence of random variables (V, € R : n € N) is a martingale
difference sequence with respect to a random sequence (X, € R : n € N) if V,, is a function of Xj,...,X, for all
neN, and

E[Vas1 | X1, Xa] =0.

Lemma A.2. LetV and Z be random variables satisfying E[V | Z| = 0 and f(Z) <V < f(Z) +c for some function
f and constant ¢ > 0. Then, for all t > 0, we have

E[eY | Z] < 8,

Proof. The result follows from Hoeffding’s Lemma for conditional expectation given Z, where [a,b] = [f(Z), f(Z)+
cl. O

Theorem A.3 (Azuma’s inequality). Let (V, : n € N) be a martingale difference sequence with respect to the
random variables (X, : n € N) and assume that for all n € N there is a constant ¢, > 0 and random variable Z,,
which is a function of Xy, ..., X;_1, that satisfy Z; < V; < Z; +c. Defining 6> 2 Y™ c? = ||c

i1 CF %, we have for all
e>0andmeN,
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Proof. For any k € N, we can define Sy £ ):5'(:1 Vi, then by Chernoff bound, we have

252
P{Sy > €} < e E[¢'S] = e “CE[e'Su_1E[e""|X1,. .., Xn_1]] < e TEE[e/Sm-1]e""M/8 < exp <t6+ g) .

The result for the first part follows by taking t* = %. The second part can be proved similarly. O

Definition A.4 (Bounded difference property). A function f : X" — R is said to have the bounded difference
property, if for all i € [m] there exists a constant ¢; > 0 such that for any x,y € R™ differing only at the ith location,
we have

|f(x) = f(y)] < ci. (1)

The vector ¢ € R is called the bounding vector.

Theorem A.5 (McDiarmid’s inequality). Let f : X™ be a function with the bounded difference property with
bounding vector ¢ € R", and (X; € X : i € [m]) be a set of m independent random variables. Denoting f(S) =
S(Xi,...,Xm), for all € > 0, we have

PLf(S)—Ef(S) > e} <e /Il P{f(S)~Ef(S) < —e} < 2/IE,



Proof. Tt suffices to show that f(S) —Ef(S) = Y/, V; for some martingale difference sequence (V; : i € [m]) with
respect to the sequence (X; : i € [m]) and Z; < V; < Z; + ¢; for some random variable Z; a function of Xj,...,X;_i.
Let V = f(S) — Ef(S), then we define such a sequence (Vi,...,V,,) as

m
Vi=E[V | X1,... X —E[V | X1,.... X1, k€ [m], Y vi=v.
k=1
We can verify that (V; : i € [m]) is martingale difference equation, since Vy is a function of X1, ..., Xy and E[V¢|Xy,..., X 1] =

0 for each k € [m]. Since Ef(S) is not random, we can write
Ve =E[f(S) | X1,.... X —E[£(S) | X1,..., Xk—1],
and define upper and lower bounds for V; as

Wi £ supE[f(S) | X1,.... Xk—1,x] —E[f(S) | X1,.... Xk1], Uk én}flE[f(S) | X1, X, x] —EIF(S) | X1, X

Then the result follows from the hypothesis (T)), which implies that

Wk —Uk = SU%CE[f(S) } X[,...,kal,x] —E[f(S) | X],. .. ,kal,y] < ¢
X,ye
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