
Lecture-08: Rademacher Complexity

1 Rademacher complexity

PAC learning guarantees were for finite hypothesis sets. However typical hypothesis sets in machine
learning problems are infinite, e.g. set of all hyperplanes in SVM. We will generalize existing results and
derive general learning guarantees for infinite hypothesis sets. We will reduce the infinite hypothesis
set to a finite set depending on the notion of complexity. First notion is Rademacher complexity, which
is difficult to compute empirically for many hypothesis sets. We then study combinatorial notions of
complexity, growth function and the VC-dimension. We relate Rademacher complexity to growth func-
tion, and then bound the growth function by the VC-dimension, which are easy to bound or compute
in many cases.

Definition 1.1. Consider a hypothesis set H ⊂ YX and loss function L : Y× Y→ R. Let Z≜ X× Y, then
for each hypothesis h ∈ H, we can associate a function g : Z → R define for all (x,y) ∈ Z as g(x,y) ≜
L(h(x),y), which captures the corresponding loss L. The family of loss function associated to hypothesis
set H is defined as G ≜ {(x,y) 7→ L(h(x),y) : h ∈ H} .

Definition 1.2 (Rademacher random vector). An i.i.d. random vector X : Ω → {−1,1}m distributed
uniformly is called a Rademacher random vector.

Definition 1.3. For any g ∈ RZ and m-sized sample z ∈ Zm, we denote by gz ≜ (g(z1), . . . , g(zm)) ∈ Rm.

Definition 1.4 (Empirical Rademacher complexity). Let G ⊆ [a,b]Z be a family of functions, a fixed la-
beled sample z= (z1, . . . ,zm)∈Zm of size m, and σ : Ω→{−1,1}m an independent m-length Rademacher
vector. Then, the empirical Rademacher complexity of G with respect to the labeled sample z is defined as

R̂z(G)≜ Eσ

[
sup
g∈G

1
m
⟨σ, gz⟩

]
= E

[
sup
g∈G

1
m

m

∑
i=1

σig(zi)

]
.

Remark 1. The inner product ⟨σ, gz⟩ measures the correlation of gz with random noise σ, and the supre-
mum over all g ∈ G measures how well the hypothesis class H correlates with σ over the labeled sample
z. This is a measure of richness/complexity of class G, since richer families can generate more gz and
better correlate with random noise on average.

Definition 1.5 (Rademacher complexity). Let D be the unknown fixed distribution according to which
labeled sample z ∈ Zm is drawn in an i.i.d. fashion. For any m ∈ N, the Rademacher complexity of a family
of loss functions G is the mean of empirical Rademacher complexity for sample z, and denoted by

Rm(G)≜ ER̂z(G).

Remark 2. The Rademacher complexity captures the richness of a family of functions by measuring the
degree to which a hypothesis set can fit random noise.

Definition 1.6 (Bounded difference property). A function f : Xm → R is said to have the bounded differ-
ence property with bounding vector c ∈ Rm

+, if for any x,y ∈ Xm differing only at location i ∈ [m],

| f (x)− f (y)|⩽ ci. (1)

Remark 3. Let G ⊆ [0,1]Z and a ∈ [−1,1]m, we define a map ka : Zm → Rm for all z ∈ Zm as ka(z) ≜
supg∈G ⟨a, gz⟩. Fix i ∈ [m] and choose w,z ∈ Zm such that wj = zj for all j ∈ [m] \ {i}. Then, we have

|ka(z)− ka(w)|⩽ sup
g∈G

∣∣∣∣∣ m

∑
j=1

ajg(zj)−
m

∑
j=1

ajg(wj)

∣∣∣∣∣ = sup
g∈G

|ai| |g(zi)− g(wi)|⩽ 1.

It follows that map ka has bounded difference property with bounding vector 1.
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Lemma 1.7. Let G ⊆ [0,1]Z. Then, P
{
Rm(G)⩽ R̂z(G) +

√
1

2m ln 2
δ

}
⩾ 1 − δ

2 for any δ > 0.

Proof. From Remark ??, we observe that R̂z(G) satisfies the bounded difference property with bounding
vector 1

m 1. Applying the McDiarmid’s inequality to R̂z(G), we obtain P
{∣∣R̂z(G)− ER̂z(G)

∣∣⩾ ϵ
}
⩽

e−2mϵ2
for any ϵ > 0. The result follows by setting 2e−2mϵ2

= δ.

Definition 1.8. For any labeled sample z ∈ Zm and loss function g ∈ G, we denote the empirical average
of g over labeled sample z as Êz[g] ≜ 1

m ⟨1, gz⟩ = 1
m ∑m

i=1 g(zi). The mean of empirical average Êz[g] is
denoted by Eg ≜ EÊz[g] = Eg(z1).

Theorem 1.9. Consider the following events defined for δ > 0, g ∈ G ⊆ [0,1]Z, and i.i.d. sample z ∈ Zm,

Eg ≜

{
Eg − Êz[g]⩽ 2Rm(G) +

√
1

2m
ln

1
δ

}
, Fg ≜

{
Eg − Êz[g]⩽ 2R̂z(G) + 3

√
1

2m
ln

2
δ

}
.

Then, P
(
∩g∈G Eg

)
⩾ 1 − δ and P

(
∩g∈G Fg

)
⩾ 1 − δ.

Proof. We consider the following function Φ : Zm → R defined for all z ∈ Zm as Φ(z) ≜ supg∈G(Eg −
Êz[g]). From Remark ??, it follows that Φ has the bounded difference property with bounding vector
1
m 1. Applying McDiarmid’s inequality to Φ, we obtain for any δ > 0

P

{
Φ(z)⩽ EΦ(z) +

√
1

2m
ln

1
δ

}
= P

(
∩g∈G

{
Eg − Êz[g]⩽ EΦ(z) +

√
1

2m
ln

1
δ

})
⩾ 1 − δ.

We next bound EΦ(z) by the mean of empirical average difference for samples z,z′, sampled i.i.d. from
the fixed unknown distribution D, and applying Jensen’s inequality to convex function supremum, i.e.

EΦ(z) = E

[
sup
g∈G

(E[g]− Êz[g])

]
= E

[
sup
g∈G

E
[
Êz′ [g]− Êz[g]

]]
⩽ E

[
sup
g∈G

(Êz′ [g]− Êz[g])

]
.

Since z,z′ are i.i.d. , the inner product ⟨σ, gz′ − gz⟩ for i.i.d. Rademacher vector σ ∈ {−1,1}m has an
identical distribution to ⟨1, gz′ − gz⟩. Therefore, we have

EΦ(z)⩽ E

[
sup
g∈G

1
m
⟨σ, gz′ − gz⟩

]
⩽ E

[
sup
g∈G

1
m
⟨σ, gz′⟩

]
+ E

[
sup
g∈G

1
m
⟨−σ, gz⟩

]
= 2Rm(G).

It follows that P(∩g∈GEg)⩾ 1 − δ. From union bound and Lemma ??, we obtain

P

(
∪g∈G

{
Eg − Êz[g] > 2Rm(G) +

√
1

2m
ln

2
δ

}
∪
{
Rm(G) > R̂z(G) +

√
1

2m
ln

2
δ

})
⩽ δ.

Using the fact that Eg ∩
{
Rm(G)⩽ R̂z(G) +

√
1

2m ln 2
δ

}
⊆ Fg, we obtain P(∩g∈GFg)⩾ 1 − δ.

Lemma 1.10. Let Y≜ {−1,1} and Z≜X× Y, the hypothesis set H ⊆ YX, and G be the family of loss functions
associated to the hypothesis set H for the zero-one loss, i.e. G ≜

{
(x,y) 7→ 1{h(x) ̸=y} : h ∈ H

}
. For any labeled

sample z ∈ Zm, let x ∈ Xm be the unlabeled sample. Then, R̂z(G) = 1
2 R̂x(H).

Proof. Since ∑m
i=1 σi remains constant for all h ∈ H and 1{h(xi) ̸=yi} =

1−yih(xi)
2 , we can write

R̂z(G) =E

[
sup
h∈H

1
m

m

∑
i=1

σi1{h(xi) ̸=yi}

]
=E

[
sup
h∈H

1
m

m

∑
i=1

σi

(1 − yih(xi)

2

)]
=E

[
1
m

m

∑
i=1

σi + sup
h∈H

1
m

m

∑
i=1

−1
2

σiyih(xi)

]
.

Recall that Eσi = 0 for all i ∈ [m] and hence from linearity of expectation, we have E 1
m ∑m

i=1 σi = 0.
Further, −σ ◦ y = (−σiyi ∈ Y : i ∈ [m]) has same distribution as σ = (σi ∈ Y : i ∈ [m]), and therefore

R̂z(G) =
1
2

E

[
sup
h∈H

1
m
⟨−σ ◦ y, hx⟩

]
=

1
2

E

[
sup
h∈H

1
m
⟨σ, hx⟩

]
=

1
2
R̂x(H).
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Theorem 1.11 (Rademacher complexity bounds – binary classification). For any hypothesis set H ⊆ YX,
binary labels Y= {−1,+1}, i.i.d. labeled sample z ∈ Zm, and δ > 0, we define events

Eh ≜

{
R(h)⩽ R̂(h) +Rm(H) +

√
1

2m
ln

1
δ

}
Fh ≜

{
R(h)⩽ R̂(h) + R̂x(H) + 3

√
1

2m
ln

2
δ

}
.

Then, P(∩h∈HEh)⩾ 1 − δ and P(∩h∈H Fh)⩾ 1 − δ.

Proof. The result follow from Theorem ?? and Lemma ??, the fact that Eg = R(h) and Êz[g] = R̂(h), and
there is a g ∈ G for each h ∈ H.

Remark 4. The second learning bound is data dependent, and very useful if we can efficiently compute
the empirical Rademacher complexity R̂x(H). Since σ and −σ have the same distribution, we get

R̂x(H)≜ E

[
sup
h∈H

1
m
⟨−σ, h⟩

]
= −E

[
inf
h∈H

1
m
⟨σ, h⟩

]
.

for a fixed value of σ, computing infh∈H
1
m ⟨σ, h⟩ is equivalent to an empirical risk minimization problem,

which is known to be computationally hard for some hypothesis sets.

A McDiarmid’s inequality

Definition A.1 (Martingale difference). A random sequence V : Ω → RN is a martingale difference
sequence with respect to a random sequence X : Ω → RN if Vn is a function of X1, . . . , Xn for all n ∈ N,
and

E[Vn+1 | X1, . . . , Xn] = 0.

Lemma A.2. Let V and Z be random variables satisfying E[V | Z] = 0 and f (Z) ⩽ V ⩽ f (Z) + c for some
function f and constant c ⩾ 0. Then, for all t > 0, we have

E[etV | Z]⩽ et2c2/8.

Proof. The result follows from Hoeffding’s Lemma for conditional expectation given Z, where [a,b] =
[ f (Z), f (Z) + c].

Theorem A.3 (Azuma’s inequality). Let V : Ω → RN be a martingale difference sequence with respect to the
random sequence X : Ω → RN and assume that for all i ∈ N there is a constant ci ⩾ 0 and random variable Zi,
which is a function of X1, . . . , Xi−1, that satisfies Zi ⩽ Vi ⩽ Zi + ci. Defining σ2 ≜ ∑m

i=1 c2
i = ∥c∥2

2, we have for
all ϵ > 0 and m ∈ N,

P

{
m

∑
i=1

Vi ⩾ ϵ

}
⩽ e−2ϵ2/σ2

, P

{
m

∑
i=1

Vi ⩽−ϵ

}
⩽ e−2ϵ2/σ2

.

Proof. For any k ∈ N, we can define Sk ≜ ∑k
i=1 Vi, then by Chernoff bound, we have

P{Sm ⩾ ϵ}⩽ e−tϵE[etSm ] = e−tϵE[etSm−1E[etVm |X1, . . . , Xm−1]]⩽ e−tϵE[etSm−1 ]et2c2
m/8 ⩽ exp

(
−tϵ +

t2σ2

8

)
.

The result for the first part follows by taking t∗ = 4ϵ
σ2 . The second part can be proved similarly.

Theorem A.4 (McDiarmid’s inequality). Let f : Xm → R be a function with the bounded difference property
with bounding vector c ∈ Rm

+, and X : Ω → Xm be an independent random vector. For all ϵ > 0, we have

P{ f (X)− E f (X)⩾ ϵ}⩽ e−2ϵ2/∥c∥2
2 , P{ f (X)− E f (X)⩽−ϵ}⩽ e−2ϵ2/∥c∥2

2 .

Proof. It suffices to show that f (X) − E f (X) = ∑m
i=1 Vi for some martingale difference sequence V :

Ω → Rm with respect to the sequence X : Ω → Rm and for each i ∈ [m] there exists a constant ci and
a random variable Zi a function of X1, . . . , Xi−1 such that Zi ⩽ Vi ⩽ Zi + ci. We define such a random
sequence V : Ω → Rm for all k ∈ [m], as

Vk ≜ E[ f (X) | X1, . . . , Xk]− E[ f (X) | X1, . . . , Xk−1].
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We can verify that ∑m
k=1 Vk = f (X) − E f (X) and V : Ω → Rm is a martingale difference vector with

respect to random vector X, since Vk is a function of X1, . . . , Xk and E[Vk|X1, . . . , Xk−1] = 0 for each
k ∈ [m]. We can define upper and lower bounds for Vk as

Uk ≜ sup
x

E[ f (X) | X1, . . . , Xk−1, x]− E[ f (X) | X1, . . . , Xk−1], Lk ≜ inf
x

E[ f (X) | X1, . . . , Xk−1, x]− E[ f (X) | X1, . . . , Xk−1].

Consider inputs X Then the result follows from the hypothesis (??), which implies that

Uk − Lk = sup
x,y∈X

E[ f (X) | X1, . . . , Xk−1, x]− E[ f (X) | X1, . . . , Xk−1,y]⩽ ck.
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