

Lecture-09: Growth functions and VC-dimension

1 Growth function

Rademacher complexity can be bounded in terms of the growth function.

Definition 1.1 (Dichotomy). A *dichotomy* of an unlabeled sample $x \in \mathcal{X}^m$ using a hypothesis $h \in H \subseteq \mathcal{Y}^{\mathcal{X}}$ is the generated label sequence $h_x \triangleq (h(x_1), \dots, h(x_m)) \in \mathcal{Y}^m$. For a hypothesis set $H \subseteq \mathcal{Y}^{\mathcal{X}}$, the set of dichotomies of sample $x \in \mathcal{X}^m$, is the set of m -length label sequences $H_x \triangleq \{h_x : h \in H\} \subseteq \mathcal{Y}^m$.

Definition 1.2 (Growth function). For a hypothesis set H , the *growth function* $\Pi_H : \mathbb{Z}_+ \rightarrow \mathbb{Z}_+$ is defined as

$$\Pi_H(m) \triangleq \max_{x \in \mathcal{X}^m} |H_x| = \max_{x \in \mathcal{X}^m} |\{h_x : h \in H\}|.$$

Remark 1. Growth function is a purely combinatorial measure, and the following holds true for it.

- (a) It is the maximum number of distinct ways in which m points can be classified using hypotheses in H . Note that it is maximum and not supremum, since there are finitely many elements in each set H_x . Specifically, $|H_x| \leq |\mathcal{Y}|^m$.
- (b) It is a measure of richness of the hypothesis set H .
- (c) It doesn't depend on the unknown distribution D , unlike Rademacher complexity.

Lemma 1.3 (Massart). Consider a finite set $A \subset \mathbb{R}^m$ with $r \triangleq \max_{u \in A} \|u\|_2$, and independent Rademacher random vector $\sigma : \Omega \rightarrow \{-1, 1\}^m$. Then, we have $\mathbb{E}[\frac{1}{m} \sup_{u \in A} \langle \sigma, u \rangle] \leq \frac{r}{m} \sqrt{2 \ln |A|}$.

Proof. Fix $t > 0$. Applying Jensen's inequality to the convex function $f(x) = e^{tx}$, rearranging terms, upper bounding the supremum of positive numbers by its sum, and linearity of expectation, we obtain

$$e^{t \mathbb{E} \sup_{x \in A} \langle \sigma, x \rangle} \leq \mathbb{E} e^{t \sup_{x \in A} \langle \sigma, x \rangle} = \mathbb{E} \sup_{x \in A} e^{t \langle \sigma, x \rangle} \leq \mathbb{E} \sum_{x \in A} e^{t \langle \sigma, x \rangle} = \sum_{x \in A} \mathbb{E} e^{t \langle \sigma, x \rangle}.$$

From the independence of Rademacher random vector σ , the application of Hoeffding lemma for each product term where $-t|x_i| \leq t\sigma_i x_i \leq t|x_i|$ for all $i \in [m]$, and the definition of r , we get

$$e^{t \mathbb{E} \sup_{x \in A} \langle \sigma, x \rangle} \leq \sum_{x \in A} \mathbb{E}[e^{t \langle \sigma, x \rangle}] \leq \sum_{x \in A} \prod_{i=1}^m \mathbb{E}[e^{t \sigma_i x_i}] \leq \sum_{x \in A} \prod_{i=1}^m e^{\frac{4t^2 x_i^2}{8}} \leq \sum_{x \in A} e^{\frac{t^2}{2} \|x\|_2^2} \leq |A| e^{\frac{t^2 r^2}{2}}.$$

Taking the natural log of both sides and dividing by t , we get $\mathbb{E} \sup_{x \in A} \langle \sigma, x \rangle \leq \frac{1}{t} \ln |A| + \frac{t r^2}{2}$. The upper bound is minimized by taking $t^* = \frac{1}{r} \sqrt{2 \ln |A|}$. We get the result by dividing the both sides of this minimized upper bound by m . \square

Corollary 1.4. For binary labels $\mathcal{Y} \triangleq \{-1, 1\}$ and hypothesis set $H \subset \mathcal{Y}^{\mathcal{X}}$, we have $\mathcal{R}_m(H) \leq \sqrt{\frac{2}{m} \ln \Pi_H(m)}$.

Proof. Recall that $h_x \triangleq (h(x_1), \dots, h(x_m)) \in \mathcal{Y}^m$ for any unlabeled sample $x \in \mathcal{X}^m$ and hypothesis $h \in H$. For a fixed sample x and hypothesis set H , we denote the dichotomy set by $H_x \triangleq \{h_x : h \in H\} \subseteq \mathcal{Y}^m$. Any vector $y \in \mathcal{Y}^m$ has norm $\|y\|_2 = \sqrt{m}$. Applying Massart's lemma to the finite set H_x , we get

$$\mathcal{R}_m(H) = \mathbb{E}_x \hat{\mathcal{R}}_x(H) = \mathbb{E}_x \mathbb{E}_\sigma \sup_{h \in H} \frac{1}{m} \langle \sigma, h_x \rangle = \mathbb{E}_x \mathbb{E}_\sigma \sup_{u \in H_x} \frac{1}{m} \langle \sigma, u \rangle \leq \mathbb{E} \sqrt{\frac{2}{m} \ln |H_x|}.$$

By definition, we have $|H_x| \leq \Pi_H(m)$, and hence the result follows. \square

Corollary 1.5 (Growth function generalization bound). Consider hypothesis set $H \subset \mathcal{Y}^{\mathcal{X}}$ for binary labels $\mathcal{Y} \triangleq \{-1, 1\}$. Then, for any $\delta > 0$

$$P\left(\bigcap_{h \in H} \left\{ R(h) \leq \hat{R}(h) + \sqrt{\frac{2}{m} \ln \Pi_H(m)} + \sqrt{\frac{1}{2m} \ln \frac{1}{\delta}} \right\}\right) \geq 1 - \delta.$$

Remark 2. Growth function bounds can be also derived directly without using Rademacher complexity bounds. The resulting bound is $P\{|R(h) - \hat{R}(h)| > \epsilon\} \leq 4\Pi_H(2m)e^{-\frac{m\epsilon^2}{8}}$. The generalization bound obtained from this bound differs from Corollary ?? only in constants.

Remark 3. The computation of the growth function may not be always convenient since, by definition, it requires computing $\Pi_H(m)$ for all $m \in \mathbb{N}$.

2 Vapnik-Chervonenkis (VC) dimension

The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth function or the Rademacher Complexity. We will consider the target space $\mathcal{Y} = \{-1, 1\}$ in the following.

Definition 2.1 (Shattering). An unlabeled sample $x \in \mathcal{X}^m$ is said to be *shattered* by a hypothesis set $H \subseteq \mathcal{Y}^{\mathcal{X}}$ when this set realizes all possible dichotomies of x , that is when $|H_x| = |\mathcal{Y}|^m$.

Definition 2.2 (VC-dimension). The *VC-dimension* of a hypothesis set H is the size of the largest unlabeled sample that can be fully shattered by H . That is, $\text{VC-dim}(H) \triangleq \max\{m \in \mathbb{Z}_+ : \Pi_H(m) = 2^m\}$.

Remark 4. By definition $\text{VC-dim}(H) = d$ implies that there exists an unlabeled sample $x \in \mathcal{X}^d$ of size d that can be fully shattered, i.e. $|H_x| = |\mathcal{Y}|^d$. This does not imply that all unlabeled samples of size d or less are fully shattered. In fact, this is typically not the case. It is easy to see that if no unlabeled samples of size m are fully shattered, then no unlabeled samples of size $m + 1$ can be fully shattered.

Remark 5. To compute the VC-dim-dimension we will typically show a lower bound for its value and then a matching upper bound. To show a lower bound d for $\text{VC-dim}(H)$, it suffices to show that a sample $x \in \mathcal{X}^d$ can be shattered by hypothesis set H . To show an upper bound, we need to prove that no sample $x \in \mathcal{X}^{d+1}$ can be shattered by hypothesis set H . This step is typically more difficult.

Example 2.3 (Intervals on the real line). For binary labels $\mathcal{Y} \triangleq \{-1, 1\}$ and input space $\mathcal{X} = \mathbb{R}$, consider a hypothesis set $H \subseteq \mathcal{Y}^{\mathbb{R}}$ of separating intervals on real line \mathbb{R} defined as

$$H \triangleq \left\{ x \mapsto \mathbb{1}_{[a,b]}(x) - \mathbb{1}_{[a,b]^c}(x) : a, b \in \mathbb{R} \right\} \subseteq \mathcal{Y}^{\mathbb{R}}.$$

We observe that for $d = 2$, possible dichotomies are $\mathcal{Y}^d = \{(-1, -1), (-1, 1), (1, -1), (1, 1)\}$. Let $x \in \mathbb{R}^d$, then we can find $a, b \in \mathbb{R}$ such that corresponding $h^{a,b} \in H$ achieves any dichotomy in \mathcal{Y}^d . To show this, we can assume that $x_1 < x_2$ without any loss of generality, and observe that for any $h^{a,b} \in H$

$$h_x^{a,b} = \begin{cases} (-1, -1), & x_2 < a \text{ or } x_1 > b, \\ (-1, 1), & x_1 < a < x_2 < b, \\ (1, -1), & a < x_1 < b < x_2, \\ (1, 1), & a < x_1 < x_2 < b. \end{cases}$$

Further, for any sample $x \in \mathbb{R}^3$ such that $x_1 < x_2 < x_3$ there is no $a, b \in \mathbb{R}$ such that $h_x^{a,b} = (1, -1, 1)$. That is, no set of three points can be shattered, and hence $\text{VC-dim}(H) = 2$.

Remark 6. The VC-dimension of any vector space of dimension $r < \infty$ can be shown to be at most r .

Theorem 2.4 (Sauer). Consider hypothesis set $H \subseteq \mathcal{Y}^{\mathcal{X}}$ for binary labels $\mathcal{Y} \triangleq \{-1, 1\}$ with $\text{VC-dim}(H) = d$. Then, we have $\Pi_H(m) \leq \sum_{i=0}^d \binom{m}{i}$ for all $m \in \mathbb{N}$.

Proof. The proof is by induction on the pair (m, d) . If $d = 0$, then $\Pi_H(1) < 2$ for all points $x \in \mathcal{X}$, which implies H consists of single function, and therefore the upper bound of unity holds for $m = 1$. If $d = 1$, then $\Pi_H(2) < 4$ and $\Pi_H(1) = 2$, and the upper bound of $1 + m = 2$ holds for $m = 1$. Therefore, the statement holds true for the pairs $(m, d) = (1, 1)$ and $(m, d - 1) = (1, 0)$.

We assume that the inductive hypothesis holds true for $(m - 1, d - 1)$ and $(m - 1, d)$. Let $x \in \mathcal{X}^m$ be the sample with $\Pi_H(m)$ dichotomies. That is, $|H_x| = \Pi_H(m)$. We define $G \triangleq \{g \in H : g_x \in H_x\}$, and hence $\text{VC-dim}(G) \leq \text{VC-dim}(H) = d$. Further, we observe that $G_x = H_x$ and hence $\pi_G(m) = \pi_H(m)$. Consider the subsample $x' = (x_1, \dots, x_{m-1})$, the corresponding dichotomy set $H_{x'}$, and define $G^1 \triangleq$

$\{g \in H : g_{x'} \in H_{x'}\}$. It follows that $\text{VC-dim}(G^1) \leq \text{VC-dim}(H) = d$ and together with induction hypothesis, we obtain

$$|H_{x'}| = |G_{x'}^1| \leq \pi_{G^1}(m-1) \leq \sum_{i=0}^d \binom{m-1}{i}.$$

We define projection operator $\pi : \mathcal{Y}^m \rightarrow \mathcal{Y}^{m-1}$ for all $y \in \mathcal{Y}^{m-1}$ as $\pi(y) = (y_1, \dots, y_{m-1})$. For each $v \in H_{x'}$, we have $\pi^{-1}(v) = \{(v, -1), (v, 1)\}$ and $\pi^{-1}(v) \cap H_x \neq \emptyset$, and hence we can find a set $H_x^1 \subseteq H_x$ that is bijective to $H_{x'}$ and $\pi(H_x^1) = H_{x'}$. We define $H_x^2 \triangleq H_x \setminus H_x^1$ such that for each $v \in H_x^2$ we have $\pi^{-1} \circ \pi(v) = \{(v, -1), (v, 1)\}$. We can find a bijection from H_x^2 to the set $H_{x'}^2 \triangleq \{v \in H_{x'} : \pi^{-1}(v) = \{(v, -1), (v, 1)\}\}$. We define hypothesis set $G^2 \triangleq \{g \in H : g_{x'} \in H_{x'}^2\}$ such that $G_{x'}^2 = H_{x'}^2$. From the definition of G^2 , we have if $|G_y^2| = \pi_{G^2}(k) = 2^k$ for $y \in \mathcal{Y}^k$ and $k \leq m-1$, then $|G_{y,x_m}^2| = 2\pi_{G^2}(k) = 2^{k+1}$ and hence $\text{VC-dim}(G^2) + 1 \leq \text{VC-dim}(G)$. Together with the induction hypothesis, it follows that

$$|G_{x'}^2| = |H_{x'}^2| \leq \pi_{G^2}(m-1) \leq \sum_{i=0}^{d-1} \binom{m-1}{i}.$$

Since $\pi_H(m) = |H_x| = |H_x^1| + |H_x^2|$, we obtain the result for (m, d) . \square

Corollary 2.5. *Let H be a hypothesis set with $\text{VC-dim}(H) = d$, then*

$$\Pi_H(m) \leq \left(\frac{em}{d}\right)^d = O(m^d), \text{ for all } m \geq d.$$

Proof. For $m \geq d$ and $0 \leq i \leq d$, we have $(\frac{m}{d})^{d-i} \geq 1$. Therefore,

$$\Pi_H(m) \leq \sum_{i=0}^d \binom{m}{i} \leq \sum_{i=0}^d \binom{m}{i} \left(\frac{m}{d}\right)^{d-i} = \left(\frac{m}{d}\right)^d \sum_{i=0}^d \binom{m}{i} \left(\frac{d}{m}\right)^i \leq \left(\frac{m}{d}\right)^d \sum_{i=0}^m \binom{m}{i} \left(\frac{d}{m}\right)^i.$$

From Binomial theorem, we get $\sum_{i=0}^m \binom{m}{i} \left(\frac{d}{m}\right)^i = \left(1 + \frac{d}{m}\right)^m$. Since $1 + x \leq e^x$ for all $x \in \mathbb{R}$, we get $\left(1 + \frac{d}{m}\right)^m \leq e^d$, and hence the result follows. \square

Remark 7. The growth function only exhibits two types of behavior,

- (i) either $\text{VC-dim}(H) = d < \infty$, in which case $\Pi_H(m) = O(m^d)$,
- (ii) or $\text{VC-dim}(H) = \infty$, in which case $\Pi_H(m) = 2^m$ for all $m \in \mathbb{N}$.

Corollary 2.6 (VC-dimension generalization bounds). *Consider hypothesis set $H \subset \mathcal{Y}^{\mathcal{X}}$ for binary labels $\mathcal{Y} \triangleq \{-1, 1\}$ with VC-dimension d . Then, for any $\delta > 0$*

$$P\left(\bigcap_{h \in H} \left\{ R(h) \leq \hat{R}(h) + \sqrt{\frac{2d}{m} \ln \frac{em}{d}} + \sqrt{\frac{1}{2m} \ln \frac{1}{\delta}} \right\}\right) \geq 1 - \delta.$$

Remark 8. With high probability, we observe the following for the generalization risk $R(h)$.

- (i) Generalization risk is of the form $R(h) \leq \hat{R}(h) + O\left(\sqrt{\frac{\ln(m/d)}{m/d}}\right)$, signifying the importance of the ratio $\frac{m}{d}$.
- (ii) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk can be obtained as

$$\hat{R}(h) + \sqrt{\frac{1}{m} (8d \ln \frac{2em}{d} + 8 \ln \frac{4}{\delta})}.$$