Lecture-09: Growth functions and VC-dimension

1 Growth function

Rademacher complexity can be bounded in terms of the growth function.

Definition 1.1 (Dichotomy). A dichotomy of an unlabeled sample x € X" using a hypothesis h € H C Y*
is the generated label sequence hy = (h(x1),...,h(xy)) € Y. For a hypothesis set H C Y¥, the set of
dichotomies of sample x € X", is the set of m-length label sequences Hy = {hy:he H} CY™.

Definition 1.2 (Growth function). For a hypothesis set H, the growth function 11y : Z — Z is defined
as

Iy (m) égg@(} |Hy| :?gjagﬂ{hx:h € H}|.

Remark 1. Growth function is a purely combinatorial measure, and the following holds true for it.

(a) Itis the maximum number of distinct ways in which m points can be classified using hypotheses in
H. Note that it is maximum and not supremum, since there are finitely many elements in each set
Hy. Specifically, |Hy| < [Y]™.

(b) It is a measure of richness of the hypothesis set H.

(c) It doesn’t depend on the unknown distribution D, unlike Rademacher complexity.

Lemma 1.3 (Massart). Consider a finite set A C R™ with r £ max,c ||u||,, and independent Rademacher
random vector o : Q0 — {—1,1}". Then, we have E[-L sup,,_ 4 (o,u)] < L/2In|A].

Proof. Fix t > 0. Applying Jensen’s inequality to the convex function f(x) = e/*, rearranging terms,
upper bounding the supremum of positive numbers by its sum, and linearity of expectation, we obtain

et]EsupxeA<¢7,x> < ]EetsupxeA(a,x) = Esup et(a,x) <E Z et(a,x) _ Z ]Eet(a,x).
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From the independence of Rademacher random vector o, the application of Hoeffding lemma for each
product term where —t |x;| < tojx; < t|x;| for all i € [m], and the definition of r, we get

m m 4252 .
MEsuPren (0.%) < 2 ]E[ef@frx)] < 2 H]E[etaixi] < 2 He% < 2 e%”"“% < ‘A’g#.
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Taking the natural log of both sides and dividing by t, we get Esup, . 4 (o,x) < 1 In|A| + % The upper

bound is minimized by taking t* = 1,/2In[A]. We get the result by dividing the both sides of this
minimized upper bound by m. O

Corollary 1.4. For binary labels Y = {—1,1} and hypothesis set H C Y*, we have Ry, (H) < /2 InT1y(m).

Proof. Recall that hy = (h(xy),...,h(x))) € Y™ for any unlabeled sample x € X™ and hypothesis i € H.
For a fixed sample x and hypothesis set H, we denote the dichotomy set by Hy = {hy:h € H} C Y.
Any vector y € Y™ has norm ||y||, = /m. Applying Massart’s lemma to the finite set Hy, we get

R (H) = ExRy(H) = ExE,sup 1 (0,hy) = ExE, sup 1 (o,u) <Ey/ E1n|Hx|.
heH m ucHy m
By definition, we have |Hy| < ITg(m), and hence the result follows. O

Corollary 1.5 (Growth function generalization bound). Consider hypothesis set H C Y for binary labels
Y £ {—1,1}. Then, for any 6 > 0

P( N {R(h) < R(h) + \/ilnHH(m) + \/Zmln(s}) >1-0.

heH




Remark 2. Growth function bounds can be also derived directly without using Rademacher complexity

A ?7162
bounds. The resulting bound is P {|R(h) — R(h)| > e} < 4I1y(2m)e” s . The generalization bound
obtained from this bound differs from Corollary ?? only in constants.

Remark 3. The computation of the growth function may not be always convenient since, by definition,
it requires computing Iy (m) for all m € IN.

2 Vapnik-Chervonenkis (VC) dimension

The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth
function or the Rademacher Complexity. We will consider the target space Y = {—1,1} in the following.

Definition 2.1 (Shattering). An unlabeled sample x € X" is said to be shattered by a hypothesis set
H C YX when this set realizes all possible dichotomies of x, that is when |Hy| = |Y|".

Definition 2.2 (VC-dimension). The VC-dimension of a hypothesis set H is the size of the largest unla-
beled sample that can be fully shattered by H. That is, VC-dim(H) £ max {m € Z : [Ty (m) =2"}.

Remark 4. By definition VC-dim(H) = d implies that there exists an unlabeled sample x € X? of size d

that can be fully shattered, i.e. |[Hy| = |Y ]d. This does not imply that all unlabeled samples of size d or
less are fully shattered. In fact, this is typically not the case. It is easy to see that if no unlabeled samples
of size m are fully shattered, then no unlabeled samples of size m + 1 can be fully shattered.

Remark 5. To compute the VC-dim-dimension we will typically show a lower bound for its value and
then a matching upper bound. To show a lower bound d for VC-dim(H), it suffices to show that a
sample x € X? can be shattered by hypothesis set H. To show an upper bound, we need to prove that
no sample x € X%+ can be shattered by hypothesis set H. This step is typically more difficult.

Example 2.3 (Intervals on the real line). For binary labels Y = {—1,1} and input space X = R,
consider a hypothesis set H C YR of separating intervals on real line R defined as

A {x = Loy (1) = Ligppe(x) 1a,b € JR} CyR,

We observe that for d = 2, possible dichotomies are Y¢ = {(—1,—-1),(—1,1),(1,—1),(1,1)}. Let
x € R?, then we can find 4,b € R such that corresponding 1’ € H achieves any dichotomy in
Y4, To show this, we can assume that x; < x, without any loss of generality, and observe that for
any h*? € H
(—1,-1), xp<aorx;>b,
pab (-1,1), x<a<x<b,
g (1,-1), a<x;<b<ux,
(1,1), a<x;<x<b.
Further, for any sample x € R3 such that x; < xp < x3 there is no a,b € R such that h,’lgb =(1,-1,1).
That is, no set of three points can be shattered, and hence VC-dim(H) = 2.

Remark 6. The VC-dimension of any vector space of dimension r < co can be shown to be at most 7.

Theorem 2.4 (Sauer). Consider hypothesis set H C Y* for binary labels Y = {—1,1} with VC-dim(H) = d.
Then, we have Iy (m) < Y4 (") for all m € N.

Proof. The proof is by induction on the pair (m,d). If d = 0, then ITy (1) < 2 for all points x € X, which
implies H consists of single function, and therefore the upper bound of unity holds form =1. If d =1,
then ITy(2) < 4 and ITg(1) = 2, and the upper bound of 1 + m = 2 holds for m = 1. Therefore, the
statement holds true for the pairs (m,d) = (1,1) and (m,d — 1) = (1,0).

We assume that the inductive hypothesis holds true for (m —1,d — 1) and (m — 1,d). Let x € X" be
the sample with Iy (m) dichotomies. That is, |Hy| = Iy (m). We define G £ {g € H: g« € Hy}, and
hence VC-dim(G) < VC-dim(H) = d. Further, we observe that Gy = H, and hence 7tg(m) = rty(m).
Consider the subsample x’ = (x1,...,x,_1), the corresponding dichotomy set H,s, and define G! £



{¢g€H:gv € Hy}. Tt follows that VC-dim(G') < VC-dim(H) = d and together with induction hy-
pothesis, we obtain

1 4 m—1
|Hx/|: GX’ gT(Gl(m_l)<Z( l )
i=0

We define projection operator 7t : Y — Y"1 forally € Y" ' as 7(y) = (y1,..-,Ym_1)- Foreachv € Hy,
we have 71 (v) = {(v,-1),(v,1)} and i (v) N Hy # @, and hence we can find a set H}C C H, thatis bi-
jective to Hy and 7t(H}) = H,,. We define H2 £ H, \ H} such that for each v € H2 we have 7! o 71(v) =
{(v,—1),(v,1)}. We can find a bijection from H? to the set H2, £ {v € H, : m~1(v) = {(v,—1),(0,1)} }.
We define hypothesis set G £ {g € H: gy € H%} such that G2, = H2. From the definition of G?,
we have if ‘G;‘ = 71, (k) = 2F for y € Y¥ and k < m — 1, then ‘Gi,xm‘ = 271¢, (k) = 2¥1 and hence
VC-dim(G;) + 1 < VC-dim(G). Together with the induction hypothesis, it follows that

5 5 =1 /1
G :’Hx, <7TG2(m—1)<2< ; )
i=0

Since 7y (m) = |Hy| = |H}| + |H2

, we obtain the result for (m,d). O

Corollary 2.5. Let H be a hypothesis set with VC-dim(H) = d, then

N

(@)d — O(m%), for all m > d.

[Ty (m) 7

Proof. Form >d and 0 < i< d, we have (%)d_i > 1. Therefore,

mio <) <55 (1) ()= C)'E () (2) <GV E () (3)

i m
From Binomial theorem, we get /" (") (1) = (1 + %) . Since 1+ x < €* for all x € R, we get

m

(1 + %) " < e?, and hence the result follows. O]

Remark 7. The growth function only exhibits two types of behavior,
(i) either VC-dim(H) = d < oo, in which case Iy (m) = O(m?),
(i) or VC-dim(H) = oo, in which case ITg(m) = 2" for all m € IN.

Corollary 2.6 (VC-dimension generalization bounds). Consider hypothesis set H C Y~ for binary labels
Y £ {—1,1} with VC-dimension d. Then, for any § > 0

P( N {R(h) gR(h)+\/f;Z1nezl”+\/;nln(1s}) >1-4.

heH

Remark 8. With high probability, we observe the following for the generalization risk R(h).
(i) Generalization risk is of the form R(h) < R(h) +O ( In(m/d) ) , signifying the importance of the

m/d
ratio 7.
(if) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk
can be obtained as
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