
Lecture-09: Growth functions and VC-dimension

1 Growth function

Rademacher complexity can be bounded in terms of the growth function.

Definition 1.1 (Dichotomy). A dichotomy of an unlabeled sample x ∈Xm using a hypothesis h ∈ H ⊆ YX

is the generated label sequence hx ≜ (h(x1), . . . , h(xm)) ∈ Ym. For a hypothesis set H ⊆ YX, the set of
dichotomies of sample x ∈ Xm, is the set of m-length label sequences Hx ≜ {hx : h ∈ H} ⊆ Ym.

Definition 1.2 (Growth function). For a hypothesis set H, the growth function ΠH : Z+ → Z+ is defined
as

ΠH(m)≜ max
x∈Xm

|Hx| = max
x∈Xm

|{hx : h ∈ H}| .

Remark 1. Growth function is a purely combinatorial measure, and the following holds true for it.
(a) It is the maximum number of distinct ways in which m points can be classified using hypotheses in

H. Note that it is maximum and not supremum, since there are finitely many elements in each set
Hx. Specifically, |Hx|⩽ |Y|m.

(b) It is a measure of richness of the hypothesis set H.
(c) It doesn’t depend on the unknown distribution D, unlike Rademacher complexity.

Lemma 1.3 (Massart). Consider a finite set A ⊂ Rm with r ≜ maxu∈A ∥u∥2, and independent Rademacher
random vector σ : Ω → {−1,1}m. Then, we have E[ 1

m supu∈A ⟨σ,u⟩]⩽ r
m

√
2ln |A|.

Proof. Fix t > 0. Applying Jensen’s inequality to the convex function f (x) = etx, rearranging terms,
upper bounding the supremum of positive numbers by its sum, and linearity of expectation, we obtain

etEsupx∈A⟨σ,x⟩ ⩽ Eetsupx∈A⟨σ,x⟩ = Esup
x∈A

et⟨σ,x⟩ ⩽ E ∑
x∈A

et⟨σ,x⟩ = ∑
x∈A

Eet⟨σ,x⟩.

From the independence of Rademacher random vector σ, the application of Hoeffding lemma for each
product term where −t |xi|⩽ tσixi ⩽ t |xi| for all i ∈ [m], and the definition of r, we get

etEsupx∈A⟨σ,x⟩ ⩽ ∑
x∈A

E[et⟨σ,x⟩]⩽ ∑
x∈A

m

∏
i=1

E[etσixi ]⩽ ∑
x∈A

m

∏
i=1

e
4t2x2

i
8 ⩽ ∑

x∈A
e

t2
2 ∥x∥2

2 ⩽ |A| e
t2r2

2 .

Taking the natural log of both sides and dividing by t, we get Esupx∈A ⟨σ, x⟩⩽ 1
t ln |A|+ tr2

2 . The upper
bound is minimized by taking t∗ = 1

r

√
2ln |A|. We get the result by dividing the both sides of this

minimized upper bound by m.

Corollary 1.4. For binary labels Y≜ {−1,1} and hypothesis set H ⊂ YX, we have Rm(H)⩽
√

2
m lnΠH(m).

Proof. Recall that hx ≜ (h(x1), . . . , h(xm))) ∈ Ym for any unlabeled sample x ∈ Xm and hypothesis h ∈ H.
For a fixed sample x and hypothesis set H, we denote the dichotomy set by Hx ≜ {hx : h ∈ H} ⊆ Ym.
Any vector y ∈ Ym has norm ∥y∥2 =

√
m. Applying Massart’s lemma to the finite set Hx, we get

Rm(H) = ExR̂x(H) = ExEσ sup
h∈H

1
m
⟨σ, hx⟩ = ExEσ sup

u∈Hx

1
m
⟨σ,u⟩⩽ E

√
2
m

ln |Hx|.

By definition, we have |Hx|⩽ ΠH(m), and hence the result follows.

Corollary 1.5 (Growth function generalization bound). Consider hypothesis set H ⊂ YX for binary labels
Y≜ {−1,1}. Then, for any δ > 0

P
( ⋂

h∈H

{
R(h)⩽ R̂(h) +

√
2
m

lnΠH(m) +

√
1

2m
ln

1
δ

})
⩾ 1 − δ.
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Remark 2. Growth function bounds can be also derived directly without using Rademacher complexity

bounds. The resulting bound is P
{∣∣R(h)− R̂(h)

∣∣ > ϵ
}
⩽ 4ΠH(2m)e−

mϵ2
8 . The generalization bound

obtained from this bound differs from Corollary ?? only in constants.

Remark 3. The computation of the growth function may not be always convenient since, by definition,
it requires computing ΠH(m) for all m ∈ N.

2 Vapnik-Chervonenkis (VC) dimension

The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth
function or the Rademacher Complexity. We will consider the target space Y= {−1,1} in the following.

Definition 2.1 (Shattering). An unlabeled sample x ∈ Xm is said to be shattered by a hypothesis set
H ⊆ YX when this set realizes all possible dichotomies of x, that is when |Hx| = |Y|m.

Definition 2.2 (VC-dimension). The VC-dimension of a hypothesis set H is the size of the largest unla-
beled sample that can be fully shattered by H. That is, VC-dim(H)≜ max{m ∈ Z+ : ΠH(m) = 2m} .

Remark 4. By definition VC-dim(H) = d implies that there exists an unlabeled sample x ∈ Xd of size d
that can be fully shattered, i.e. |Hx| = |Y|d. This does not imply that all unlabeled samples of size d or
less are fully shattered. In fact, this is typically not the case. It is easy to see that if no unlabeled samples
of size m are fully shattered, then no unlabeled samples of size m + 1 can be fully shattered.

Remark 5. To compute the VC-dim-dimension we will typically show a lower bound for its value and
then a matching upper bound. To show a lower bound d for VC-dim(H), it suffices to show that a
sample x ∈ Xd can be shattered by hypothesis set H. To show an upper bound, we need to prove that
no sample x ∈ Xd+1 can be shattered by hypothesis set H. This step is typically more difficult.

Example 2.3 (Intervals on the real line). For binary labels Y ≜ {−1,1} and input space X = R,
consider a hypothesis set H ⊆ YR of separating intervals on real line R defined as

H ≜
{

x 7→ 1[a,b](x)− 1[a,b]c(x) : a,b ∈ R
}
⊆ YR.

We observe that for d = 2, possible dichotomies are Yd = {(−1,−1), (−1,1), (1,−1), (1,1)}. Let
x ∈ Rd, then we can find a,b ∈ R such that corresponding ha,b ∈ H achieves any dichotomy in
Yd. To show this, we can assume that x1 < x2 without any loss of generality, and observe that for
any ha,b ∈ H

ha,b
x =


(−1,−1), x2 < a or x1 > b,
(−1,1), x1 < a < x2 < b,
(1,−1), a < x1 < b < x2,
(1,1), a < x1 < x2 < b.

Further, for any sample x ∈ R3 such that x1 < x2 < x3 there is no a,b ∈ R such that ha,b
x = (1,−1,1).

That is, no set of three points can be shattered, and hence VC-dim(H) = 2.

Remark 6. The VC-dimension of any vector space of dimension r < ∞ can be shown to be at most r.

Theorem 2.4 (Sauer). Consider hypothesis set H ⊆ YX for binary labels Y≜ {−1,1} with VC-dim(H) = d.
Then, we have ΠH(m)⩽ ∑d

i=0 (
m
i ) for all m ∈ N.

Proof. The proof is by induction on the pair (m,d). If d = 0, then ΠH(1) < 2 for all points x ∈ X, which
implies H consists of single function, and therefore the upper bound of unity holds for m = 1. If d = 1,
then ΠH(2) < 4 and ΠH(1) = 2, and the upper bound of 1 + m = 2 holds for m = 1. Therefore, the
statement holds true for the pairs (m,d) = (1,1) and (m,d − 1) = (1,0).

We assume that the inductive hypothesis holds true for (m − 1,d − 1) and (m − 1,d). Let x ∈ Xm be
the sample with ΠH(m) dichotomies. That is, |Hx| = ΠH(m). We define G ≜ {g ∈ H : gx ∈ Hx}, and
hence VC-dim(G) ⩽ VC-dim(H) = d. Further, we observe that Gx = Hx and hence πG(m) = πH(m).
Consider the subsample x′ = (x1, . . . , xm−1), the corresponding dichotomy set Hx′ , and define G1 ≜
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{g ∈ H : gx′ ∈ Hx′}. It follows that VC-dim(G1) ⩽ VC-dim(H) = d and together with induction hy-
pothesis, we obtain

|Hx′ | =
∣∣∣G1

x′

∣∣∣⩽ πG1(m − 1)⩽
d

∑
i=0

(
m − 1

i

)
.

We define projection operator π : Ym → Ym−1 for all y ∈ Ym−1 as π(y) = (y1, . . . ,ym−1). For each v ∈ Hx′ ,
we have π−1(v) = {(v,−1), (v,1)} and π−1(v)∩ Hx ̸= ∅, and hence we can find a set H1

x ⊆ Hx that is bi-
jective to Hx′ and π(H1

x) = Hx′ . We define H2
x ≜ Hx \ H1

x such that for each v ∈ H2
x we have π−1 ◦π(v) =

{(v,−1), (v,1)}. We can find a bijection from H2
x to the set H2

x′ ≜
{

v ∈ Hx′ : π−1(v) = {(v,−1), (v,1)}
}

.
We define hypothesis set G2 ≜

{
g ∈ H : gx′ ∈ H2

x′
}

such that G2
x′ = H2

x′ . From the definition of G2,

we have if
∣∣∣G2

y

∣∣∣ = πG2(k) = 2k for y ∈ Yk and k ⩽ m − 1, then
∣∣∣G2

y,xm

∣∣∣ = 2πG2(k) = 2k+1 and hence
VC-dim(G2) + 1 ⩽ VC-dim(G). Together with the induction hypothesis, it follows that

∣∣∣G2
x′

∣∣∣ = ∣∣∣H2
x′

∣∣∣⩽ πG2(m − 1)⩽
d−1

∑
i=0

(
m − 1

i

)
.

Since πH(m) = |Hx| =
∣∣H1

x
∣∣+ ∣∣H2

x
∣∣, we obtain the result for (m,d).

Corollary 2.5. Let H be a hypothesis set with VC-dim(H) = d, then

ΠH(m)⩽
( em

d

)d
= O(md), for all m ⩾ d.

Proof. For m ⩾ d and 0 ⩽ i ⩽ d, we have (m
d )

d−i ⩾ 1. Therefore,

ΠH(m)⩽
d

∑
i=0

(
m
i

)
⩽

d

∑
i=0

(
m
i

)(m
d

)d−i
=

(m
d

)d d

∑
i=0

(
m
i

)(
d
m

)i
⩽

(m
d

)d m

∑
i=0

(
m
i

)(
d
m

)i
.

From Binomial theorem, we get ∑m
i=0 (

m
i )
(

d
m

)i
=

(
1 + d

m

)m
. Since 1 + x ⩽ ex for all x ∈ R, we get(

1 + d
m

)m
⩽ ed, and hence the result follows.

Remark 7. The growth function only exhibits two types of behavior,
(i) either VC-dim(H) = d < ∞, in which case ΠH(m) = O(md),

(ii) or VC-dim(H) = ∞, in which case ΠH(m) = 2m for all m ∈ N.

Corollary 2.6 (VC-dimension generalization bounds). Consider hypothesis set H ⊂ YX for binary labels
Y≜ {−1,1} with VC-dimension d. Then, for any δ > 0

P
( ⋂

h∈H

{
R(h)⩽ R̂(h) +

√
2d
m

ln
em
d

+

√
1

2m
ln

1
δ

})
⩾ 1 − δ.

Remark 8. With high probability, we observe the following for the generalization risk R(h).

(i) Generalization risk is of the form R(h) ⩽ R̂(h) + O
(√

ln(m/d)
m/d

)
, signifying the importance of the

ratio m
d .

(ii) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk
can be obtained as

R̂(h) +

√
1
m
(8d ln

2em
d

+ 8ln
4
δ
).
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