
Lecture-10: Complexity bounds for separating hyperplanes

1 Margin theory

We present generalization bounds for SVM algorithms based on the notion of margin.

Definition 1.1 (Affine hypothesis set). Consider binary label set Y ≜ {−1,1}, input space X ⊆ RN , a
labeled sample z ∈ (X× Y)m, and define an affine hypothesis set

H ≜
{

x 7→ ⟨w, x⟩+ b : w ∈ RN ,b ∈ R
}
⊆ RX.

Definition 1.2 (Margin). The geometric margin ρ(zi) of example i ∈ [m] with respect to an affine hy-
pothesis hw,b ∈ H is its distance to the hyperplane Ew,b ≜

{
x ∈ RN : ⟨w, x⟩+ b = 0

}
. That is,

ρ(zi)≜
yihw,b(xi)

∥w∥ =
yi(⟨w, xi⟩+ b)

∥w∥ .

The margin of an affine classifier hw,b ∈ H for a labeled sample z ∈ (X× Y)m is the minimum margin
over the points in the sample, i.e. ρ ≜ min{ρ(zi) : i ∈ [m]} .

Corollary 1.3. For any δ > 0 and H ≜
{

x 7→ ⟨w, x⟩+ b : w ∈ RN ,b ∈ R
}

, we have
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Proof. Recall that the VC-dimension of the family of hyperplanes or linear hypotheses in RN is N + 1.
The result follows from the application of corollary to Sauer’s lemma to generalization bound for this
hypothesis set.

Remark 1. When the dimension of the feature space n is large compared to the sample size m, this bound
is uninformative.

2 Complexity bounds for separating hyperplanes

We will find tighter upper bounds on the Rademacher complexity and VC-dimension on the hypothesis
class of separating hyperplanes and its analog in higher dimensions using kernel methods.

2.1 Separating hyperplanes based hypotheses

Theorem 2.1 (VC-dimension for hypothesis set of canonical separating hyperplanes). Consider an
unlabeled sample x ∈ Xm such that supi∈[m] ∥xi∥ ⩽ r and the hypothesis set of canonical hyperplanes H ≜

{x 7→ sign(⟨w, x⟩) : minx∈A |⟨w, x⟩| = 1,∥w∥⩽ Λ} . Then, VC-dim(H)⩽ r2Λ2.

Proof. Let VC-dim(H) = d, and unlabeled sample x ∈Xd that can be fully shattered, i.e. |Hx|= 2d. Then,
for any label sequence y ∈ {−1,1}d, there exists hw ∈ H such that hw

x = y. That is, there exists w ∈ RN

such that yi(⟨w, xi⟩)⩾ 1 for all i ∈ [d]. Summing up these inequalities for each i ∈ [d], from the linearity
of inner product, Cauchy-Schwartz inequality, and hypothesis ∥w∥⩽ Λ, we get
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Since this inequality holds for any label sequence y ∈ {−1,1}d, it also holds on expectation over y ∈
{−1,1}d drawn i.i.d. according to a uniform distribution. From the independence assumption, we have
E[yiyj] = E[yi]E[yj] for i ̸= j. Thus, since the distribution is uniform, E[yiyj] = 1{i=j}. Taking expecta-
tion and applying Jensen’s inequality to convex square function, we get
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Remark 2. When the training data is linearly separable, the maximum-margin canonical hyperplane
with ∥w∥= 1/ρ can be plugged into above theorem. In this case, Λ = 1/ρ, and the upper bound can be
rewritten as r2/ρ2. Note that the choice of Λ must be made before receiving the sample x ∈ Xd.

Theorem 2.2 (Rademacher complexity for separating hyperplanes). Consider unlabeled sample x ∈ Xm

such that supi∈[m] ∥xi∥ ⩽ r and and the hypothesis set of hyperplanes H ≜ {x 7→ sign(⟨w, x⟩) : ∥w∥⩽ Λ} .

Then, R̂x(H) = 1√
m rΛ.

Proof. From the definition of empirical Rademacher complexity, the linearity of inner products, the
application of Cauchy-Schwarz inequality to inner products, the application of Jensen’s inequality to
convex square function, and i.i.d. uniform nature of Rademacher vector σ, we get
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Lemma 2.3. Consider a binary label set Y≜ {−1,1}, input space X⊆ Rd, unlabeled sample x ∈Xm, hypothesis
set H ⊆ RX, and b ∈ R. Define b + H ≜ {b + h : h ∈ H}, then Rx(H) = Rx(H̄).

Proof. From the definition of empirical Rademacher complexity and the fact that Rademacher vector σ
is i.i.d. zero mean, we get
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2.2 Kernel based hypotheses

Consider an input space X ⊆ Rd, binary label set Y ≜ {−1,1}, a PDS kernel k : X× X → R, associated
RKHS H, and a hypothesis set of the form H ≜ {h ∈ H : ∥h∥H ⩽ Λ} for some Λ ⩾ 0. Recall that the
feature map Φ : X→ H for the associated RKHS is defined as Φ(x) ≜ ex = k(x, ·) for all x ∈ X. Further
any w ∈ H has the form x 7→ ⟨w, ex⟩ = ⟨w,Φ(x)⟩ due to the reproducing property. For any w ∈ H, we
have ∥w∥H ⩽ Λ.

Theorem 2.4 (Rademcaher complexity of kernel-based hypotheses). Consider a PDS kernel k : X×X→
R, associated RKHS H and feature mapping Φ :X→H, an unlabeled sample x ∈Xm such that supi∈[m] k(xi, xi)⩽

r2, and a hypothesis set H ≜ {x 7→ ⟨w,Φ(x)⟩ : ∥w∥H ⩽ Λ} ⊆ H for some Λ ⩾ 0. Denoting the kernel matrix
K ∈ Rm×m associated with kernel k and unlabeled sample x, defined as Kij ≜ k(xi, xj), we observe that
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Proof. From the definition of empirical Rademacher complexity, the linearity of inner products, the
application of Cauchy-Schwarz inequality to inner products, the application of Jensen’s inequality to
convex square function, and i.i.d. uniform nature of Rademacher vector σ, we get
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The result follows since ∥Φ(xi)∥2
H = k(xi, xi) and ∑m

i=1 k(xi, xi) = trK.
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Remark 3. Trace of the kernel matrix is an important quantity for controlling the complexity of hypoth-
esis sets based on kernels.

A Talagrand’s inequality

Lemma A.1 (Talagrand). Let Φ : R → R be an ℓ-Lipschitz function. Then, for any hypothesis set H of real-
valued functions, we have

R̂x(Φ ◦ H)⩽ ℓR̂x(H).

Proof. The empirical Rademacher complexity for an unlabeled sample x ∈ Xm, is

R̂x(Φ ◦ H) =
1
m

Eσ
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]]
,

where um−1(h)≜∑m−1
i=1 σi(Φ ◦ h)(xi) for any hypothesis h ∈ H. Fix ϵ > 0. By the definition of supremum,

there exist h1, h2 ∈ H such that

um−1(h1) + (Φ ◦ h1)(xm)⩾ (1 − ϵ)sup
h∈H

[um−1(h) + (Φ ◦ h)(xm)] ,

um−1(h2)− (Φ ◦ h2)(xm)⩾ (1 − ϵ)sup
h∈H

[um−1(h)− (Φ ◦ h)(xm)] .

Thus for any ϵ > 0, by the definition of Eσm , we have

(1− ϵ)E
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]
⩽

1
2
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1
2
[um−1(h2)− (Φ ◦ h2)(xm)] .

From the ℓ-Lipschitz property of Φ, we get (Φ ◦ h1)(xm)− (Φ ◦ h2)(xm)⩽ ℓ |h1(xm)− h2(xm)|. Defining
s ≜ sign(h1(xm)− h2(xm)), we get
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.

Since the inequality holds for all ϵ > 0, we have
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]
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.

Proceeding in the same way for all other σi, i ∈ [m − 1] proves the lemma.
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