Lecture-10: Complexity bounds for separating hyperplanes

1 Margin theory
We present generalization bounds for SVM algorithms based on the notion of margin.

Definition 1.1 (Affine hypothesis set). Consider binary label set Y = {—1,1}, input space X C RV, a
labeled sample z € (X x Y)™, and define an affine hypothesis set

Hé{xw(w,x)+b:weRN,b€]R}gle.

Definition 1.2 (Margin). The geometric margin p(z;) of example i € [m] with respect to an affine hy-
pothesis 1% € H is its distance to the hyperplane E,,;, = {x e RN: (w,x) + b =0}. That s,

The margin of an affine classifier " € H for a labeled sample z € (X x Y)™ is the minimum margin
over the points in the sample, i.e. p = min {p(z;) :i € [m]}.

Corollary 1.3. Forany § > 0and H= {x+— (w,x) + b:w € RN,b € R}, we have

P<hQH{R(h) <R(h) + \/Z(NmH) In (Ne’_tl) + Zinmi}) >1-4.

Proof. Recall that the VC-dimension of the family of hyperplanes or linear hypotheses in RY is N + 1.
The result follows from the application of corollary to Sauer’s lemma to generalization bound for this
hypothesis set. O

Remark 1. When the dimension of the feature space # is large compared to the sample size m, this bound
is uninformative.

2 Complexity bounds for separating hyperplanes

We will find tighter upper bounds on the Rademacher complexity and VC-dimension on the hypothesis
class of separating hyperplanes and its analog in higher dimensions using kernel methods.

2.1 Separating hyperplanes based hypotheses

Theorem 2.1 (VC-dimension for hypothesis set of canonical separating hyperplanes). Consider an
unlabeled sample x € X™ such that sup;c,, [|xi| < r and the hypothesis set of canonical hyperplanes H =

{x + sign({w,x)) : minye 4 | (w,x)| =1, ||w|| < A}. Then, VC-dim(H) < r2A2.

Proof. Let VC-dim(H) = d, and unlabeled sample x € X that can be fully shattered, i.e. |Hy| =2%. Then,

for any label sequence y € {—1,1}d, there exists h € H such that h¥ = y. That is, there exists w € RN
such that y;((w, x;)) > 1 for all i € [d]. Summing up these inequalities for each i € [d], from the linearity
of inner product, Cauchy-Schwartz inequality, and hypothesis ||w| < A, we get
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Since this inequality holds for any label sequence y € {—1,1}d, it also holds on expectation over y €

{-11 }d drawn i.i.d. according to a uniform distribution. From the independence assumption, we have

E[y;y;] = E[y;][E[y;] for i # j. Thus, since the distribution is uniform, E[y,y;] = 1,_». Taking expecta-
YiYj YillBly; ] YiYj {i=} g exp

tion and applying Jensen’s inequality to convex square function, we get
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Remark 2. When the training data is linearly separable, the maximum-margin canonical hyperplane
with ||w|| = 1/p can be plugged into above theorem. In this case, A = 1/p, and the upper bound can be
rewritten as % /2. Note that the choice of A must be made before receiving the sample x € X“.

Theorem 2.2 (Rademacher complexity for separating hyperplanes). Consider unlabeled sample x € X™
such that sup;cp,, ||xi|| < r and and the hypothesis set of hyperplanes H £ [y s sign((w,x)) : |w|| < A}.

Then, R (H) = \/ﬁrA.

Proof. From the definition of empirical Rademacher complexity, the linearity of inner products, the
application of Cauchy-Schwarz inequality to inner products, the application of Jensen’s inequality to
convex square function, and i.i.d. uniform nature of Rademacher vector o, we get
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Lemma 2.3. Consider a binary label set Y = {—1,1}, input space X C R¥, unlabeled sample x € X", hypothesis
set HCRX, and b € R. Defineb+ H = {b+h:h € H}, then Ry (H) = Ry (H).

Proof. From the definition of empirical Rademacher complexity and the fact that Rademacher vector o
is i.i.d. zero mean, we get
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2.2 Kernel based hypotheses

Consider an input space X C R¥, binary label set Y £ {-1,1}, a PDS kernel k: X x X — R, associated
RKHS H, and a hypothesis set of the form H = {h € H : ||| < A} for some A > 0. Recall that the

feature map @ : X — H for the associated RKHS is defined as ®(x) £ ey = k(x,-) for all x € X. Further
any w € H has the form x — (w,ex) = (w,P(x)) due to the reproducing property. For any w € H, we
have ||w||5 < A.

Theorem 2.4 (Rademcaher complexity of kernel-based hypotheses). Consider a PDS kernel k: X x X —
R, associated RKHS H and feature mapping @ : X — H, an unlabeled sample x € X™ such that sup;c,,, k(x;,x;) <

r2, and a hypothesis set H = {x — (w,®(x)) : ||w|lyy < A} € H for some A > 0. Denoting the kernel matrix
K € R™*™ gssociated with kernel k and unlabeled sample x, defined as K,] = k(xl,x]), we observe that
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Proof. From the definition of empirical Rademacher complexity, the linearity of inner products, the
application of Cauchy-Schwarz inequality to inner products, the application of Jensen’s inequality to
convex square function, and i.i.d. uniform nature of Rademacher vector o, we get
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The result follows since \|<I>(xi)||§i:k(xi,xi) and Y | k(xj,x;) = trK. O



Remark 3. Trace of the kernel matrix is an important quantity for controlling the complexity of hypoth-
esis sets based on kernels.

A Talagrand’s inequality

Lemma A.1 (Talagrand). Let @ : IR — R be an {-Lipschitz function. Then, for any hypothesis set H of real-
valued functions, we have
Rx(®o H) < IRy (H).

Proof. The empirical Rademacher complexity for an unlabeled sample x € X", is
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where u,,_1(h) = Z;’:ll 0;(®oh)(x;) for any hypothesis h € H. Fix € > 0. By the definition of supremum,
there exist hq,hy € H such that

U1 (h1) + (P o h1)(xm) = (1 —€)sup [y 1 (k) + (o h)(xm)],

heH
Upy—1(hy) — (Pohy)(xm) = (1 —e)sup [uy_1(h) — (Poh)(xy)].
heH
Thus for any € > 0, by the definition of [E,,,, we have
1 1
(1—€)E [supuy—1(h) + om(Poh)(xp) | < 2 [t—1(h1) + (P ohy)(xm)] + 5 [ty—1(hy) — (P ohy)(xm)].
heH

From the ¢-Lipschitz property of ®, we get (P o hy) (xm) — (P ohy)(xp) < £ |h1(x) — ha(xm)|. Defining
s £ sign(hy (xm) — ha(xm)), we get
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Since the inequality holds for all € > 0, we have

Eo,, |supum—1(h) + om(Poh)(xpm)| < Eq, [supuy,_1(h) + Umﬁh(xm)] .
heH heH
Proceeding in the same way for all other o;,i € [m — 1] proves the lemma. O
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