Lecture-12: Statistical decision theory

1 Setting

Definition 1.1. Consider a measurable space (Q),J), a parameter space ©, and a set of probability
distributions M (@) £ {P € [0,1]8(©) . P satisfies probability axioms} . Let Py € M(®) be a probability
distribution for each 8 € ©. A statistical model refers to a collection of probability distributions denoted

e P(®) £ {Py € M(©):0 € O}. @

Remark 1. Without loss of generality, all statistical models can be expressed in the parametric form of (T).

Definition 1.2. A statistical model is called parametric if ® is a finite-dimensional Euclidean space so
that each distribution is specified by finitely many parameters, and nonparametric if ® is an infinite-
dimensional space e.g. density estimation or sequence model.

Assumption 1.3. Let X,Y,© be the input, output, and parameter spaces respectively. Let estimand map
be T:©® — Y and P(O) be a statistical model parametrized over parameter space ®. The observation
random variable X : ) — X is assumed to be F measurable and generated by distribution Py € P(0®)
and the goal is to estimate T'(0) based on the observation X.

Example 1.4. Some examples of estimand T(0) are 0,14y,sign(), or [|0[|, for some p > 1. If
@ C RY, then an interesting estimand is T(0) £ max {6; : i € [d]}. If ® C R?*, then an interesting
estimand is T(6) £ max{A; : i € [d]} where (A4,...,A,) are eigenvalues of 6.

Example 1.5 (Binary classification). Let X ARIL=Y 2L {—1,1}, estimand T(0) = 6, and an in-
dependent labeled training sample z € (X x Y)™. Defining Iy = {i € [m] :y; = 0}, we observe that
(Ip : 0 € ©) partitions [m]. For any parameter 6 € ®, we define random vector x;, = (x; : i € Ip),
which is i.i.d. with a common distribution Py. We note that this assumption is different than assum-

ing x € X" is i.i.d. . However, assuming a prior distribution 7t € [0,1]5(®) such that
D(x) £ Eg . Py(x) = /9 dr(6)Py(x), for each x € X,
€0

we can assume that x € X" is i.i.d. with common distribution D € M (X).

Definition 1.6. An estimator is a function T : X x [0,1] — Y, where prediction space Y need not be
same as output space Y.

Remark 2. The estimator T is a map such that (X,U) + Y’ where U : Q — [0,1] is a random variable
independent of observation X and models external randomness. In general, the estimator is random. A
deterministic estimator doesn’t depend on the uniform random variable U.

Example 1.7. T may be a confidence interval that aims to contain the scalar T(8).

Example 1.8 (Binary classification). We take Y’ = Y and define linear estimator T: X x [0,1] — Y as
T(x,u) = sign (w,x) for some w € RY. This is a deterministic estimator and not depending on the
external randomness.



Definition 1.9. To measure the quality of an estimator T, we introduce a loss function L: Y x Y — R
such that (T(0),T(X,U)) — L(T(8), T(X,U)) is the risk of T estimating T at parameter 6.

Remark 3. Since we are dealing with loss, all the negative or converse results are lower bounds and all
the positive or achievable results are upper bounds. Note that X is a random variable, so is the estimate
T(X,U) and the loss L(T(0), T(X,U)).

Definition 1.10. The risk of estimator T at a parameter 6 under loss L is defined as

Re(T,T) 2 E[L(T(0), T(X,U)) | 6] = /dPg(x) /MG[O ; L(T(8), T(x,u))du.

Example 1.11 (Binary classification for general parameter space). We take the following parameter
space, estimation goal, estimator, and loss functions for @ N ©; = @,

O£0)U®;, T(0)=1e,(0), Y ={01}, L(T(@),T(X,u))én{T(Q)ﬁ(Xu)}.

Denoting the random set © £ {6 c0:T(X, u) = T(())}, we can write the expected risk as
Re(T,T) =Py {6 ¢ O3} the probability of error.

Example 1.12 (Confidence interval estimation). Consider the problem of inference where the goal
is to output a confidence interval or region which covers the true parameter with high probability.
In this case, Y = ® = X C R?, estimand T(0) = 6, and estimate T2 x [0,1] =Y £ P(©). Estimate
62 T(X,U) C O is a subset of parameter © for observation X and external randomness U : Q) —
[0,1]. For loss function L : Y x Y’ defined as L(T(6), T(X,U)) = L(6,0) = ]1{969} +A }é| where ‘@’ is

the volume of region  and A > 0 is some regularization parameter.

Remark 4 (Randomized versus deterministic estimators). Although most of the estimators used in prac-

tice are deterministic, there are a number of reasons to consider randomized estimators.

(a) For certain formulations, such as the minimizing worst-case risk (minimax approach), deterministic
estimators are suboptimal and it is necessary to randomize. On the other hand, if the objective is to
minimize the average risk (Bayes approach), then it does not lose generality to restrict to determin-
istic estimators.

(b) The space of randomized estimators (viewed as Markov kernels) is convex which is the convex
hull of deterministic estimators. This convexification is needed for example for the treatment of
minimax theorems.

Lemma 1.13. When loss function L :Y x Y — R is convex in the second arqument, the best estimator is
deterministic.

Proof. We denote y = T(6) and Y £ T(X,U). From conditional Jensen’s inequality applied to the second
argument of function L, it follows that Ry(T,T) =E[L(y,Y) | 6] > E[L(y,E[Y | X,6]) | 0]. O

Remark 5. For any randomized estimator T(X,U), we can derandomize it by considering its conditional
expectation E[T(X,U) | X], which is a deterministic estimator. For convex loss functions, the risk for
deterministic estimator dominates that of the random estimator at every parameter 6.

2 Gaussian location model (GLM)

Definition 2.1 (Gaussian location model (GLM) or normal mean model). Consider parameter space
® C RY where I; denotes the d-dimensional identity matrix. Gaussian location model (GLM) is the collec-
tion of d-dimensional Gaussian distributions parameterized by mean 6 and variance ¢, and denoted

P(©) 2 {N(6,0%l):0 € OF.

Remark 6. For an observation X : Q) — IR¥ generated by GLM on parameter space ® C R?, we can write
the observation as X = 6 + Z where Z is a zero-mean Gaussian random variable A/ (0,021;).



Example 2.2 (Parametric spaces ® C R? for GLM). Following are some of the examples.
(a) Unconstrained. © = R%.

(b) £pnorm balls. © = {0 € R : [|0]|, <1}.

(c) k-sparse vectors. ® = {9 eR?: 0], < k} where |0]|, = [{i € [d] : 6; # 0}| is the size of the
support of 6.

(d) r-rank matrices. ® = {9 € R4*% ; rankf < r}. A matrix 6 € R4*% can be vectorized into a
d = di x dp dimensional vector.

Example 2.3 (Loss functions and estimators for GLM). LetY =Y = ©® where T(0) :AH and denote
6 = T(X,U). We consider following loss functions L:® x © — Ry defined for all (6,0) € © x ©.

(a) A p-norm loss function defined as L(6,) £ HG QH forp>1and a > 0.

(b) Log-likelihood loss function defined as L(6,0) £ —In Py, and the resulting estimator that min-
imizes the loss is called the maximum likelihood estimator (MLE) and denoted by Onir.. From
the definition of the log-likelihood loss function, minimizing loss is equivalent to maximizing
log likelihood of sample X, which for GLM is given by

dl (2710?)

h‘lpé = 5

We observe that 6y, = X maximizes the log-likelihood for GLM.

(c) The resulting estimator based on shrinkage is called the James-Stein estimator é]g = (1 —

(d—2)0? X
X2 )

3 Bayes and minimax risk

Definition 3.1 (Simple setting) For notational simplicity, we consider the task of estimating T(0) =6,

such that Y =Y = ® and (IS (X U) for observation X : ) — X with distribution Py and external
randomness U : ) — [0,1] independent of everything else.

The risk Rq(8) of an estimator § depends on the ground truth . To choose an estimator, we need to
compare the risk profiles of different estimators meaningfully.

Definition 3.2 (Inadmissible estimator). Consider two estimators 61,8, such that Ry(8;) < Ry(8,) point-
wise for all 8, then 6, is inadmissible.

However, if two estimators 0,8, do not dominate each other point wise, then the comparison is not
clear. For example, consider the case when peak of risk 62 is bigger than the peak of risk §;, however
the average risk of 0, is smaller than the average risk of 6. From worst-case (minimax) view, 6, is a
better estimator, whereas from average-case (Bayesian) view, 0, is a better estimator.

3.1 Bayesrisk

Definition 3.3 (Bayes risk). Let 7t be a prior probability distribution on ®. Then the average risk with
respect to 77 of an estimator @ is defined as R () £ ]EgNﬂRg(é) E[E[L(6,9) | 9]] Given a prior 7,
Bayes risk of estimator § is the minimal average risk R, £ infs R (6 ). An estimator @ is called a Bayes
estimator if it attains the Bayes risk R}, = Eg. [Rg(ég)]

Lemma 3.4. Bayes estimator is always deterministic for any loss function.

Proof. Consider any randomized estimator 8(U) £ T(X,U) where U is external randomness indepen-
dent of observation X and parameter 6. Then, its risk is lower bounded by

Ry (0) =EL(6,T(X,U)) = E[E[L(6,6(U)) | U]] = ERx(8(U)) > inf Ry (6(u)).



Exercise 3.5 (Bayes risk for square loss function). Consider the statistical decision theory simple

setting with unconstrained parameter set ® £ R, input space X = @, a prior 7 € M(®), and

the quadratic loss L : (6,8) |6 — §H2.

(a) Show that the best Bayes estimator is deterministic for any loss function. Consequently, it
suffices to focus on deterministic estimators T(X).

(b) Show that for any estimator T(X), we have E[(§ — E[0 | X])T(X)] = 0.

(c) Show that the Bayes estimator for quadratic loss is T5(X) £ E[6 | X].

(d) Show that the Bayes risk is E[tr(cov(6 | X))].

Exercise 3.6 (Bayes risk for GLM). Consider the statistical decision theory simple setting with
unconstrained parameter space ® = R? and input space X = ®. For GLM, the observation
X £ 0 + Z, where Z is independent of # and has a zero-mean Gaussian distribution N(0,021;).
Consider a Gaussian prior 71 € M (X) with zero mean and covariance matrix sl;.

(a) Given the observation X, derive the posterior distribution Py x.

(b) Find the Bayes estimator and Bayes risk for quadratic loss function L: 6 x 6 — |6 — 9||2.

3.2 Minimax risk

A common criticism of the Bayesian approach is the arbitrariness of the selected prior. Instead, we take
a frequentist viewpoint by considering the worst-case situation.

Definition 3.7 (Minimax risk). The minimax risk is defined as R* £ infysupy_¢ Ry(8). If there exists 8y,
such that sup,_q Rg(ém) = R*, then the estimator 0, is minimax optimal.

Remark 7. Let € > 0. Finding the value of the minimax risk R* entails showing the following.
(a) A minimax upper bound. Find the minimax estimator 6,, such that sup,_q Ro(6) < R* + €.

(b) A minimax lower bound. For any estimator §, find a parameter 6 € ® such that Ry(f) > R* —e.

Remark 8. Often this task is difficult, especially in high dimensions. Instead of the exact minimax risk, it
is often useful to find a constant-factor approximation ¥, which we call minimax rate, such that R* < ¥,
ie. ¥ < R* < CY for some universal constants ¢,C > 0. Establishing ¥ is the minimax rate still entails
proving the minimax upper and lower bounds, albeit within multiplicative constant factors.

Remark 9. In practice, minimax lower bounds are rarely established according to the original definition.
The next result shows that the Bayes risk is always lower than the minimax risk. All lower bound
techniques essentially boil down to evaluating the Bayes risk with a sagaciously chosen prior.

Theorem 3.8. Minimax risk is lower bounded by the worst Bayes risk, i.e. R* > R}y = sup ;e p @) R If the
supremum is attained for some prior, we say it is least favorable.

Proof. Following are two equivalent ways to prove this fact.

(a) max is greater than mean. For any estimate § and prior 77, we have average risk R (8) = ERy(f) <
supg.e Ro (0). Taking the infimum over f on both sides completes the proof.

(b) min max greater than max min. Recall that for any f : X x Y — R, we have min, max, f(x,y) >
max, miny f(x,y). It follows that

R* =infsupRy(f) =inf sup Rr(f)> sup infR.(f)= sup R}
0 ¢ b neP(®) neP(®) ¢ neP(O)

Example 3.9 (Minimax risk is minimized by randomized estimators). Unlike Bayes estimators
which are always deterministic, to minimize the worst-case risk it is sometimes necessary to ran-
domize for example in the context of hypotheses testing. Specifically, consider a trivial experiment
where parameter space ® = {0,1} and there is no observation X, so that we are forced to guess the
value of 6 € © under the zero-one loss L(6,0) = Il{e#é}. Consider an estimator §(U) £ Liys1-p)



for external randomness U : Q) — [0, 1] uniformly distributed. We observe that 8 is a Bernoulli ran-
dom variable with probability P {6 =1} = p, such that Re(6) = pf + 6p, and sup, Rg(0) = 7 V p.
Infimum over all estimators is the infimum over all probabilities p, and we can find the minimax
risk
A ~ 1
R* £ infsup Ry(#) = infsup pf + Op = infp vV p = ~.
6 o Py P 2

That is, the minimax risk % is achieved by random guessing # with uniform Bernoulli distribution
but not by any deterministic 6.
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