Lecture-13: Minimax theorem

1 Minimax Risk

Example 1.1 (Minimax quadratic risk of GLM). Consider the statistical decision theory simple
setting for Gaussian location model with unconstrained parameter space ® £ R?, input space X =
©, observation X ~ N (6,021;), and quadratic loss function L : (6,6) — |6 — 9”2. Recall that the
minimax risk is defined as R* £ infysup,_g Rg(0), where Ry () = E[L(6,0) | 6]. The upper bound is
achieved by any estimate, and the lower bound is achieved by Bayes risk under any prior 7 € P(0O).
That is, X
Ry < R* <supRy(h).
0cO

Recall that the maximum likelihood estimate for GLM and quadratic cost is Ovr, = X. Since Z =
X — 0 is zero mean Gaussian with distribution N(0,021;), the risk for ML estimate and quadratic
loss is Rg(Avr) = E[||Z||? | 8] = do? for all § € ©. For prior distribution 77 £ A (0,s];) parametrized

by variance s, we have R; = Sfazd increasing in s. The least favorable prior is the one with the

worst variance, and it follows that R} = lims_e0 Ry = do?. It follows that R* = do2.

Remark 1 (Non-uniqueness of minimax estimators). In general, estimators that achieve the minimax
risk need not be unique. For instance, as shown in Example the MLE @y = X is minimax for the
unconstrained GLM in any dimension. On the other hand, it is known that whenever 4 > 3, the risk of
the James-Stein estimator is smaller that of the MLE everywhere and thus is also minimax. In fact, there
exist a continuum of estimators that are minimax for this problem.

Example 1.2 (Minimax risk greater than Bayes risk). Consider the statistical decision theory simple
setting with @ £ IN and loss function L : (,8) — 1 {o<0}- For no observation case, estimate § =
T(U) for external randomness U : QO — [0,1], and risk Rg(8) = E[L(6,0) | ] = P{f < 6} is a non-
decreasing function of 6. It follows that sup, Rg(6) = 1 for any estimator 0. From the definition of
minimax risk R* £ infssup, Ry (0) =1.

For any prior 7 € M(IN), we have Ry (8) = Ygco P {8 < 0}, a non-increasing function in 0.
Therefore, R}, £ inf; R (6) = 0 for any prior 7 € M(IN). It follows that R} = Sup re pq(n) R =0
Therefore, in this case R* =1 > R% = 0.

Exercise 1.3. Consider the statistical decision theory simple setting for Gaussian location model

with constrained parameter space ® = R, input space X = R, observation X ~ N(6,0?), and

quadratic loss function L : (6,0) — ||§ — 0”2.

(a) Show that the minimax quadratic risk of the GLM X ~ N/ (6,0?) with constrained parameter
space ® = IR is the same as the unconstrained case ® = R.

(b) Show that the thresholded estimator Xy = X V 0 achieves a better risk compared to maxi-
mum likelihood estimator, pointwise at every 6 € IR, .




1.1 Duality of minimax and Bayes risk

Recall the inequality R* > R%. This result can be interpreted from an optimization perspective. More
precisely, R* is the value of a primal convex optimization problem and R} is precisely the value of its
dual program. Thus the inequality that minimax risk exceeds Bayes risk is simply weak duality. If strong
duality holds, then this is in fact an equality, in which case the minimax theorem holds.

Theorem 1.4. Minimax risk exceeds worst case Bayes risk, i.e. R* > Rp.

Proof. For simplicity, we consider the case where @ is a finite set. Recalling that Ry(#) = E[L(6,0) | 6],
we write .
R* = mmmang(G).

Pyx 0O
Since Py y — Ry (0 0) = Yoco L(0,0) [y Pé‘ « (v | x)dPy(x) is an affine map and the pointwise supremum of

affine functions is convex. Hence, minimax is a convex optimization problem. To write down its dual
problem, we rewrite this in an augmented form

R* =mint
Pyt

such that Rg(f) < t for all § € ©.

Let mg > 0 denote the Lagrange multiplier or the dual variable for each inequality constraint corre-
sponding to € ®. We define 7w = (719 : 6 € ®), and write the Lagrangian for the above primal problem

as
L(Pé‘x,t,ﬂ') 214 Z me(Re(0) — 1) = (1 — Z e )t + Z TeRy ().
0e® 0e® 0e®
By definition, we have R* > mil’lpé‘X,t L (Pé\X/ t,71). Wenote thatif ) gco 779 # 1, then mil’lpé‘X,t L (Pé\X/ t,m)=
—oo. Thus 7t must be a probability measure and the dual problem is

max minL(Pé|X,t, 7T) = max mmRn(@) = max R}
7T Fyxt neM(®) Pyx TEM(O)
Hence, the result follows. O

Remark 2. In summary, the minimax risk and the worst-case Bayes risk are related by convex duality,
where the primal variables are randomized estimators and the dual variables are priors. This view can
in fact be operationalized.

1.2 Minimax theorem

Consider the statistical decision theory simple setting, where the estimator 0 takes values in the action
space © with a loss function L: ® x ® — R. A very general result asserts that R* = R, provided that
the following condition hold.
1. The experiment is dominated, i.e., Py < v holds for all # € © and for for some v € M(X).
2. The action space © is a locally compact topological space with a countable base e.g. the Euclidean
space.
3. The loss function is level—compact i.e., for each 6 € ®,L(6,-) is bounded from below and the sub-
level set {§ € ®: L(6,0) <a} is compact for each a € R.
This result shows that for virtually all problems encountered in practice, the minimax risk coincides
with the least favorable Bayes risk. At the heart of any minimax theorem, there is an application of
the separating hyperplane theorem. Below we give a proof of a special case illustrating this type of
argument.

Definition 1.5. Let parameter space © be a finite set, and R® denote the Euclidean space of real-valued
vectors. Given an estimator 8, denote its risk vector R(8) £ (Rg(f) : 6 € ®). We define

S { () € R® : § is a randomized estlmator} T {t €ER®:ty<R* 0 @}.

The average risk R () with respect to a prior 7 € M(®) is given by the inner product R () £

(7, R(©).



Remark 3. Recall that Bayes risk R £ infyR(0) = infy(7,R(9)) for a prior 7 € M(®). From the
definition of S, we get R% () = inf,cs (71,5). Further, from the definition of T, we obtain R* > (r,t) for
any t € T. It follows that sup, . (77, t) = R*.

Lemma 1.6. The sets S, T defined in Definition [I.5)are convex and disjoint.

Proof. Let A € [0,1].
(a) Let 0;(X, ty), 0>(X, Uz) be two randomized estimators, then we can define another randomized
estimator (X, U) for i.i.d. external randomness U : Q) — [0,1]3,

é(X, U) = él(X, Ul)]l{usg} + éz(X, UZ)]]-{U3>/\}-
It follows that Ry (@) € S, and the convexity of S follows from the following observation,
Rq(0) =E[L(6,0) | 6] = ARg(61) + ARg(6).

Similarly, we take 1 #2 € T and hence té < R* for all 6 € ©. It follows that Até + /_\tg < R* for all
6 € ®. Hence At! + At? € T, showing the convexity of T.

(b) Recall the definition of minimax risk R* £ infsup, Rg(8). Fix € > 0. Then, for any estimator 0, there
exists 6 € @ such that Ry(f) > R* — e. Since the choice of € > 0 is arbitrary, it follows that R(d) ¢ T

for any estimator 6, and hence SN T = @.
O

Theorem 1.7 (Minimax theorem). Let © be a finite set, then R* = Ry, in either of the following cases.
1. Input space X is finite. .
2. The loss function L is bounded from below, i.e., infe,é L(6,0) > —oo.

Proof. The first case directly follows from the duality interpretation of minimax and Bayes risk and the
fact that strong duality holds for finite-dimensional linear programming.

For the second case, we start by showing that if R* = oo, then Ry = co. To see this, consider the
uniform prior 7 € M(®) and M € IN Then for any estimator 6, there exists 8 € © such that Rg(f) > M.
It follows that R 7 (8) > ﬁRg (0) > 2 101 @\ Since the choice of M was arbitrary, the result follows. Therefore,

we can assume that R* < co without any loss of generality. From theorem hypothesis L is bounded from
below, and hence R* € R. From Lemma we observe that the sets S, T of Definition|l.5|are convex and
disjoint. Applying the separating hyperplane theorem to S and T, there exists a non-zero 7t € R® and
¢ € R, such that inf,cs (77,5) > ¢ > sup, 1 (7,t). We observe that 7 must be componentwise positive,
otherwise sup, 1 (71,t) = oo contradicting the finite upper bound c. Normalizing 77, we can assume that
m € M(©), a prior on ©. The result follows from the observation that

Ry >Ry = ;gg (1t,8) > Stqu (rr,t) = R*.
€

1.3 Multiple observations and sample complexity

Definition 1.8 (Independent sampling model). Given m € IN and an experiment or statistical model
P(@) £ {Py: 0 € O}, the independent sampling model is the experiment or statistical model P, (©) £
{P;™:0 € ®}. In this experiment, observation sample X : () — X" is an ii.d. random vector drawn

from Py € M(X) for some 6 € ©.

Definition 1.9. Given a loss function L: Y x Y — R, the minimax risk for simple setting is denoted by

R}, (®) £ infsupE[L(6,0) | 6].
0 0c®

Remark 4. Tt follows that m — R}, (©) is a non-increasing map. Typically, lim,;, . R, (®) = 0 for a fixed
O C R?. A natural question to ask is the rate of convergence of minimax risk as a function of sample
size m.

Definition 1.10 (Parametric rate). In the classical large-sample asymptotics, the rate of convergence for
the quadratic risk is usually of order ®( % ), which is commonly referred to as the parametric rate.



Definition 1.11 (Sample complexity). The minimum sample size to attain a minimax risk of € > 0 is
called sample complexity and denoted by m*(€) £ min{m € N : R},(®) < €}.

Example 1.12 (GLM). Consider GLM statistical model under simpler setting with unconstrained
parameter space ® £ IR, observation space X = ®, identity matrix I; in d dimensions, and i.i.d.
sample X : ) — X™ with common Gaussian distribution ' (6,021;). We note that X £ Ly | X; is
a sufficient statistic of X for 6, and therefore the model reduces to a single observation X that has a

Gaussian distribution N (6, 5-1;). The minimax quadratic risk for this single Gaussian observation

do?
€

is %. We conclude that the sample complexity is m*(e) = { —‘, which grows linearly with the

dimension d.

Exercise 1.13 (Sample complexity as a function of dimensions). Consider the matrix case @ £
R¥*? with m independent observations in zero mean unit variance Gaussian noise, and let € be
a small constant. Then we have - .

(a) For quadratic loss, namely, [|6 — 0| 7, we have R}, = dm and hence m*(e) = ©(d?).

(b) If the loss function is || — é”ip then R}, < % and hence m*(e) = ©(d).
(c) IfT(8) = max;cq 0;, then m*(e) = ©(VInd).
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