
Lecture-13: Minimax theorem

1 Minimax Risk

Example 1.1 (Minimax quadratic risk of GLM). Consider the statistical decision theory simple
setting for Gaussian location model with unconstrained parameter space Θ ≜ Rd, input space X =

Θ, observation X ∼ N (θ,σ2 Id), and quadratic loss function L : (θ, θ̂) 7→
∥∥θ̂ − θ

∥∥2
. Recall that the

minimax risk is defined as R∗ ≜ infθ̂ supθ∈Θ Rθ(θ̂), where Rθ(θ̂)≜ E[L(θ, θ̂) | θ]. The upper bound is
achieved by any estimate, and the lower bound is achieved by Bayes risk under any prior π ∈P(Θ).
That is,

R∗
π ⩽ R∗ ⩽ sup

θ∈Θ
Rθ(θ̂).

Recall that the maximum likelihood estimate for GLM and quadratic cost is θ̂ML ≜ X. Since Z =
X − θ is zero mean Gaussian with distribution N (0,σ2 Id), the risk for ML estimate and quadratic
loss is Rθ(θ̂ML) = E[∥Z∥2 | θ] = dσ2 for all θ ∈ Θ. For prior distribution π ≜N (0, sId) parametrized
by variance s, we have Rπ = sσ2

s+σ2 d increasing in s. The least favorable prior is the one with the
worst variance, and it follows that R∗

π = lims→∞ Rπ = dσ2. It follows that R∗ = dσ2.

Remark 1 (Non-uniqueness of minimax estimators). In general, estimators that achieve the minimax
risk need not be unique. For instance, as shown in Example 1.1, the MLE θ̂ML = X is minimax for the
unconstrained GLM in any dimension. On the other hand, it is known that whenever d ⩾ 3, the risk of
the James-Stein estimator is smaller that of the MLE everywhere and thus is also minimax. In fact, there
exist a continuum of estimators that are minimax for this problem.

Example 1.2 (Minimax risk greater than Bayes risk). Consider the statistical decision theory simple
setting with Θ ≜ N and loss function L : (θ, θ̂) 7→ 1{θ̂<θ}. For no observation case, estimate θ̂ ≜

T̂(U) for external randomness U : Ω → [0,1], and risk Rθ(θ̂) = E[L(θ, θ̂) | θ] = P
{

θ̂ < θ
}

is a non-
decreasing function of θ. It follows that supθ Rθ(θ̂) = 1 for any estimator θ̂. From the definition of
minimax risk R∗ ≜ infθ̂ supθ Rθ(θ̂) = 1.

For any prior π ∈ M(N), we have Rπ(θ̂) = ∑θ∈Θ πθ P
{

θ̂ < θ
}

, a non-increasing function in θ̂.
Therefore, R∗

π ≜ infθ̂ Rπ(θ̂) = 0 for any prior π ∈ M(N). It follows that R∗
B = supπ∈M(N) R∗

π = 0.
Therefore, in this case R∗ = 1 > R∗

B = 0.

Exercise 1.3. Consider the statistical decision theory simple setting for Gaussian location model
with constrained parameter space Θ ≜ R+, input space X = R, observation X ∼ N (θ,σ2), and
quadratic loss function L : (θ, θ̂) 7→

∥∥θ̂ − θ
∥∥2

.
(a) Show that the minimax quadratic risk of the GLM X ∼N (θ,σ2) with constrained parameter

space Θ = R+ is the same as the unconstrained case Θ = R.
(b) Show that the thresholded estimator X+ = X ∨ 0 achieves a better risk compared to maxi-

mum likelihood estimator, pointwise at every θ ∈ R+.
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1.1 Duality of minimax and Bayes risk

Recall the inequality R∗ ⩾ R∗
B. This result can be interpreted from an optimization perspective. More

precisely, R∗ is the value of a primal convex optimization problem and R∗
B is precisely the value of its

dual program. Thus the inequality that minimax risk exceeds Bayes risk is simply weak duality. If strong
duality holds, then this is in fact an equality, in which case the minimax theorem holds.

Theorem 1.4. Minimax risk exceeds worst case Bayes risk, i.e. R∗ ⩾ R∗
B.

Proof. For simplicity, we consider the case where Θ is a finite set. Recalling that Rθ(θ̂) = E[L(θ, θ̂) | θ],
we write

R∗ = min
Pθ̂|X

max
θ∈Θ

Rθ(θ̂).

Since Pθ̂|X 7→ Rθ(θ̂) = ∑v∈Θ L(θ,v)
∫
X

Pθ̂|X(v | x)dPθ(x) is an affine map and the pointwise supremum of
affine functions is convex. Hence, minimax is a convex optimization problem. To write down its dual
problem, we rewrite this in an augmented form

R∗ =min
Pθ̂|X ,t

t

such that Rθ(θ̂)⩽ t for all θ ∈ Θ.

Let πθ ⩾ 0 denote the Lagrange multiplier or the dual variable for each inequality constraint corre-
sponding to θ ∈ Θ. We define π ≜ (πθ : θ ∈ Θ), and write the Lagrangian for the above primal problem
as

L(Pθ̂|X , t,π)≜ t + ∑
θ∈Θ

πθ(Rθ(θ̂)− t) = (1 − ∑
θ∈Θ

πθ)t + ∑
θ∈Θ

πθ Rθ(θ̂).

By definition, we have R∗⩾minPθ̂|X ,tL(Pθ̂|X , t,π). We note that if ∑θ∈Θ πθ ̸= 1, then minPθ̂|X ,tL(Pθ̂|X , t,π) =

−∞. Thus π must be a probability measure and the dual problem is

max
π

min
Pθ̂|X ,t

L(Pθ̂|X , t,π) = max
π∈M(Θ)

min
Pθ̂|X

Rπ(θ̂) = max
π∈M(Θ)

R∗
π .

Hence, the result follows.

Remark 2. In summary, the minimax risk and the worst-case Bayes risk are related by convex duality,
where the primal variables are randomized estimators and the dual variables are priors. This view can
in fact be operationalized.

1.2 Minimax theorem

Consider the statistical decision theory simple setting, where the estimator θ̂ takes values in the action
space Θ̂ with a loss function L : Θ × Θ̂ → R. A very general result asserts that R∗ = R∗

B, provided that
the following condition hold.

1. The experiment is dominated, i.e., Pθ ≪ ν holds for all θ ∈ Θ and for for some ν ∈M(X).
2. The action space Θ̂ is a locally compact topological space with a countable base e.g. the Euclidean

space.
3. The loss function is level-compact i.e., for each θ ∈ Θ, L(θ, ·) is bounded from below and the sub-

level set
{

θ̂ ∈ Θ̂ : L(θ, θ̂)⩽ a
}

is compact for each a ∈ R.
This result shows that for virtually all problems encountered in practice, the minimax risk coincides
with the least favorable Bayes risk. At the heart of any minimax theorem, there is an application of
the separating hyperplane theorem. Below we give a proof of a special case illustrating this type of
argument.

Definition 1.5. Let parameter space Θ be a finite set, and RΘ denote the Euclidean space of real-valued
vectors. Given an estimator θ̂, denote its risk vector R(θ̂)≜ (Rθ(θ̂) : θ ∈ Θ). We define

S ≜
{

R(θ̂) ∈ RΘ : θ̂ is a randomized estimator
}

, T ≜
{

t ∈ RΘ : tθ < R∗,θ ∈ Θ
}

.

The average risk Rπ(θ̂) with respect to a prior π ∈ M(Θ) is given by the inner product Rπ(θ̂) ≜〈
π, R(θ̂)

〉
.
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Remark 3. Recall that Bayes risk R∗
π ≜ infθ̂ Rπ(θ) = infθ̂

〈
π, R(θ̂)

〉
for a prior π ∈ M(Θ). From the

definition of S, we get R∗
π(θ̂) = infs∈S ⟨π, s⟩. Further, from the definition of T, we obtain R∗ > ⟨π, t⟩ for

any t ∈ T. It follows that supt∈T ⟨π, t⟩ = R∗.

Lemma 1.6. The sets S, T defined in Definition 1.5 are convex and disjoint.

Proof. Let λ ∈ [0,1].
(a) Let θ̂1(X,U1), θ̂2(X,U2) be two randomized estimators, then we can define another randomized

estimator θ̂(X,U) for i.i.d. external randomness U : Ω → [0,1]3, as

θ̂(X,U)≜ θ̂1(X,U1)1{U3⩽λ} + θ̂2(X,U2)1{U3>λ}.

It follows that Rθ(θ̂) ∈ S, and the convexity of S follows from the following observation,

Rθ(θ̂) = E[L(θ, θ̂) | θ] = λRθ(θ̂1) + λ̄Rθ(θ̂2).

Similarly, we take t1, t2 ∈ T and hence ti
θ < R∗ for all θ ∈ Θ. It follows that λt1

θ + λ̄t2
θ < R∗ for all

θ ∈ Θ. Hence λt1 + λ̄t2 ∈ T, showing the convexity of T.
(b) Recall the definition of minimax risk R∗ ≜ infθ̂ supθ Rθ(θ̂). Fix ϵ > 0. Then, for any estimator θ̂, there

exists θ ∈ Θ such that Rθ(θ̂) > R∗ − ϵ. Since the choice of ϵ > 0 is arbitrary, it follows that R(θ̂) /∈ T
for any estimator θ̂, and hence S ∩ T = ∅.

Theorem 1.7 (Minimax theorem). Let Θ be a finite set, then R∗ = R∗
B in either of the following cases.

1. Input space X is finite.
2. The loss function L is bounded from below, i.e., infθ,θ̂ L(θ, θ̂) > −∞.

Proof. The first case directly follows from the duality interpretation of minimax and Bayes risk and the
fact that strong duality holds for finite-dimensional linear programming.

For the second case, we start by showing that if R∗ = ∞, then R∗
B = ∞. To see this, consider the

uniform prior π ∈M(Θ) and M ∈ N. Then for any estimator θ̂, there exists θ ∈ Θ such that Rθ(θ̂)⩾ M.
It follows that Rπ(θ̂)⩾ 1

|Θ| Rθ(θ̂)⩾
M
|Θ| . Since the choice of M was arbitrary, the result follows. Therefore,

we can assume that R∗ < ∞ without any loss of generality. From theorem hypothesis L is bounded from
below, and hence R∗ ∈R. From Lemma 1.6, we observe that the sets S, T of Definition 1.5 are convex and
disjoint. Applying the separating hyperplane theorem to S and T, there exists a non-zero π ∈ RΘ and
c ∈ R, such that infs∈S ⟨π, s⟩ ⩾ c ⩾ supt∈T ⟨π, t⟩. We observe that π must be componentwise positive,
otherwise supt∈T ⟨π, t⟩= ∞ contradicting the finite upper bound c. Normalizing π, we can assume that
π ∈M(Θ), a prior on Θ. The result follows from the observation that

R∗
B ⩾ R∗

π = inf
s∈S

⟨π, s⟩⩾ sup
t∈T

⟨π, t⟩ = R∗.

1.3 Multiple observations and sample complexity

Definition 1.8 (Independent sampling model). Given m ∈ N and an experiment or statistical model
P(Θ) ≜ {Pθ : θ ∈ Θ}, the independent sampling model is the experiment or statistical model Pm(Θ) ≜{

P⊗m
θ : θ ∈ Θ

}
. In this experiment, observation sample X : Ω → Xm is an i.i.d. random vector drawn

from Pθ ∈M(X) for some θ ∈ Θ.

Definition 1.9. Given a loss function L : Y× Y′ → R+, the minimax risk for simple setting is denoted by

R∗
m(Θ)≜ inf

θ̂
sup
θ∈Θ

E[L(θ, θ̂) | θ].

Remark 4. It follows that m 7→ R∗
m(Θ) is a non-increasing map. Typically, limm→∞ R∗

m(Θ) = 0 for a fixed
Θ ⊆ Rd. A natural question to ask is the rate of convergence of minimax risk as a function of sample
size m.

Definition 1.10 (Parametric rate). In the classical large-sample asymptotics, the rate of convergence for
the quadratic risk is usually of order Θ( 1

m ), which is commonly referred to as the parametric rate.
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Definition 1.11 (Sample complexity). The minimum sample size to attain a minimax risk of ϵ > 0 is
called sample complexity and denoted by m∗(ϵ)≜ min{m ∈ N : R∗

m(Θ)⩽ ϵ} .

Example 1.12 (GLM). Consider GLM statistical model under simpler setting with unconstrained
parameter space Θ ≜ Rd, observation space X = Θ, identity matrix Id in d dimensions, and i.i.d.
sample X : Ω → Xm with common Gaussian distribution N (θ,σ2 Id). We note that X̄ ≜ 1

m ∑m
i=1 Xi is

a sufficient statistic of X for θ, and therefore the model reduces to a single observation X̄ that has a
Gaussian distribution N (θ, σ2

m Id). The minimax quadratic risk for this single Gaussian observation

is dσ2

m . We conclude that the sample complexity is m∗(ϵ) =
⌈

dσ2

ϵ

⌉
, which grows linearly with the

dimension d.

Exercise 1.13 (Sample complexity as a function of dimensions). Consider the matrix case Θ ≜
Rd×d with m independent observations in zero mean unit variance Gaussian noise, and let ϵ be
a small constant. Then we have
(a) For quadratic loss, namely,

∥∥θ − θ̂
∥∥2

F, we have R∗
m = d2

m and hence m∗(ϵ) = Θ(d2).

(b) If the loss function is
∥∥θ − θ̂

∥∥2
op then R∗

m ≍ d
m and hence m∗(ϵ) = Θ(d).

(c) If T(θ)≜ maxi∈[d] θi, then m∗(ϵ) = Θ(
√

lnd).
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