Lecture-14: Tensorization of experiments

1 Tensor product of experiments

Tensor product is a way to define a high-dimensional model from low-dimensional models.

Definition 1.1. Consider parameter space ©;, input space X;, label space Y;, prediction space Y;, esti-
mand T; : ®; — Y;, estimator T; : X; x [0,1] — Y;, and the corresponding loss function L; : Y; x Y. — R for
all i € [d]. We respectively define the tensor product of parameter, input, label, and prediction spaces,
as

e2JJe, x& X, y= 119, Y=Y

ie(d] ield) ie(d) ie(d]

The corresponding tensor product of estimand T : @ — Y, estimator T: X x [0,1]? — Y/, and loss function
L:Y x Y — R are defined respectively forall 6 € ©, (X,U) € X x [0,1],and (y,y') € Y x Y, as

d
T(0) = (Ti(6;) =i € [d]), T(x,u) = (Ty(x,U) :i e [d]), L(y,y') = ;Li(yi,yf)-

Given statistical experiments P; = {Py. : 6; € ©;} and for each i € [d], their tensor product refers to the
following statistical experiment

i=1

d
’Pé{PgéHP@.ZQE@}.

Remark 1. The observation X consists of independent and not identically distributed X; ~ Py, and the
loss function takes a separable form. This should be contrasted with the multiple-observation model, in
which m i.i.d. observations drawn from the same distribution P, are given.

Theorem 1.2 (Minimax risk of tensor product). The following equality holds true for minimax risk of the
tensorized experiment

d d
Y Rp(P) <R*(P) < )_R*(Py).
i=1 i=1
Consequently, if minimax theorem holds for each experiment, i.e., R*(P;) = R§(P;), then it also holds for the
tensorized experiment, i.e. R*(P) = Y., R*(P)).
Proof. The upper bound follows by taking a sub-class of estimators where T;(X,U) = T;(X;, U;). We can

rewrite the minimax risk for the tensorized experiment as

R*(P) =infsupE[L(T(9), T(X,U)) | 0] < 1nfsupZ]E T;(6;), Ti(X,U)) | 6]
0O T 9c@i=

U

T
d
<Y inf sup E[Li(T:(6;), Ti(X;, U;)) | 6] = Y R*(P;).
i—1 Li (X U;) ;€ 0; i=1
For the lower bound, we take a product prior 7 £ H?Zl 7t; under which 0 : (O — © is an independent
vector, and consequently X : Q) — X is an independent vector. Let T;(X,U) £ T;(X,U;) where U : Q) —
[0,1)% is an i.id. uniform vector independent of X and 6. Defining ; £ ((X;:j € [d] \ {i}),U

observe that U; is independent of X; from independence of X and independence of U. Further, we can
write T;(X,U;) = T;(X;,U;) and we observe that

Ry (Ti(X;, Uy)) = ELi(Ti(6;), T;(X;, Uy)) = inf Ry, (T3(X;, Uy)) = Ry,

i



From the fact that sup is greater than mean, and the linearity of expectation, we get

zlelglE[L(T(G)/T’(X,U)) 6] > E[L(T(6), T(X,U))] =

M-

EL;(T;(6;), T:(X,U)) ZR,T, (X;, U5)).
1

Since the choices of prior 77; and estimator T were arbitrary, the lower bound follows. O

Example 1.3 (Unstructured GLM). Consider statistical decision theory simple setting with Y =
H’ = @) 2 R4 An unstructured GLM statistical model P = (N (6,021;) : 6 € ®) with quadratic loss
L: (6,0 4_ (6; — 6;)?% is simply the d-fold tensor product of the one-dimensional

GLM. Smce rnlrumax theorern holds for the GLM, Theorem [I.2]shows the minimax risks sum up to
do?.

Remark 2. In general, it is possible that the minimax risk of the tensorized experiment is strictly less
than the sum of individual minimax risks. This may appear surprising since X; only carries information
about 6; and it makes sense intuitively to estimate 6; based solely on X;. However, this is not always
true.

Example 1.4 (Minimax risk of tensorized experiment strictly less than the sum of individual
minimax rlsks) Consider statistical decision theory simple setting with label space Y =Y =@ = ]N
observation X £ 0Z where Z : ) — {0,1} is an independent Bernoulli random variable with EZ = 1,
and the loss function L: (6,0) — 1 {0<0}- If Z = 0, then all information about 0 is erased. Therefore

for any estimator § £ T (X, U), the risk is lower bounded by
A A A 1 A
=P({0<0}|0)>P({0<06,Z=0}1|0)= EP({G <0} |{z=0},9).

Taking supremum on both sides, we obtain sup, Rg(8) > 1. Tt follows that mmlmax risk R* > j.
For an estimator T(X,U) £ X, we obtain risk Rg(8) = []l{gz<9}] Elgz_q = 1. It follows that
minimax risk R* = J. Recall that R%, = 0 in this case for any prior 7 € M(®).

Next consider the tensor product of two copies of this experiment with ® £ IN? observation

X £ 0 0 Z where i.i.d. random vector Z : Q) — {0,1}2 with EZ; = %, and the loss function L(G,é) =
1 (0<6:} +1 {6y} Consider the following estimator

01=0, £ X1V Xo+ Iix_x,m01 = 01V 02)Z1Z5 + 017125 + 6,217 + 71 2.
Since 01,6, € IN, we can write the indicators
1{@1<91} = ]1{92<91}le2 + ]l{l<91}21221 1{@2<92} = 1{9]<92}lez + 1{1<92}lez.

Since Z is i.i.d. Bernoulli random vector with EZ; = %, we get EZ17y =EZ1Z, =EZ17Z, = %. There-
fore, for any 01,6, € IN, averaging over Z1,Z,, we can find the mean loss

A 1
IEL(Q,@) = ]E]l{él<91} +]E]]-{é2<92} (]].{91<92} + ]].{92<91} +2>

Hk\w

2 Minimax risk of GLM with non-quadratic loss

Lemma 2.1. Let Z ~ N(0,1). Then for 1 < q < oo, we have minycr E |y + Z|7 = E|Z|".

Proof. We fix a € R4,y € R, and denote the distribution of random variable Z by Fz : R — [0,1]. From
the symmetry of Fz around 0 and unimodality at 0, we observe that

Pily+Z| <a} =Fz(a —y) = Fz(—a —y) < Fz(a) — Fz(—a) = P{|Z| <a}.



The equality is achieved at y = 0, and the result follows from the following observation
]E|y+Z\”7:/ P{|y+Z|q>x}dx>/ P{|Z|' > x}dx =E|Z|".
xeR4 JxeRy

O

Theorem 2.2. Consider the statistical decision theory simple setting under unstructured Gaussian location model
on ® = X = R?, and i.i.d. observation sample X : Q — X™ with common distribution N'(8,0%1;). Denoting
Z ~N(0,1;), for 1 < q < oo, we have

1

—REIZI].

infsupE[||6 — 6][7 | 6] =
0 0cO

Proof. Consider the statistical decision theory simple setting under unstructured Gaussian location

modelon ® = X = R7. Denoting estimate S T(X, U), we observe that the loss function L : Y — Y SRy

defined for all 6,0 € © as H9 - é| Z = Zf'l:1 ’91' —0; ]q is separable. We further note that N (6, I;) is a prod-

uct distribution. Thus the experiment is a d-fold tensor product of the one-dimensional version. From

Theorem 1.2} the minimax risk for this experiment lies between the aggregate minimax and the aggre-
gate worst case Bayes risk for d = 1.

For d = 1, the upper bound is achieved by the sample mean X £ Ly X; which is distributed

according to N (6, %) and is a sufficient statistic for 8. For the lower bound, we consider a Gaussian
prior 7w = N(0,s) for which the posterior distribution is also Gaussian Py x = N (134, 155 )- From
Lemma[2.1} it follows that the Bayes estimator is simply the conditional mean, and hence the Bayes risk

1S

s \1
R;:]E|9—E[9|X]|sq:(1+sm) E|Z|7.

Taking limit as s — co proves the matching lower bound. O

3 Log-concavity, Anderson’s lemma, and exact minimax risk in GLM

Computing the exact minimax risk is frequently difficult especially in high dimensions. Nevertheless,
for the special case of unconstrained GLM, the minimax risk is known exactly in arbitrary dimensions
for a large collection of loss functions. We have previously seen in Theorem [2.2] that this is possible

for loss functions of the form L: (6,0) — |6 — éHZ' Examining the proof of this result, we note that

the major limitation is that it only applies to separable loss functions, so that tensorization allows us
to reduce the problem to one dimension. This does not apply to (and actually fails) for non-separable
loss, since Theorem 1.2} if applicable, dictates the risk to grow linearly with the dimension, which is not
always the case. We next discuss a more general result that goes beyond separable losses.

Definition 3.1. A function p : RY — R is called bowl-shaped if its sublevel set K. = {x eR?:p(x) < c}
is convex and even symmetrici.e. K. = —K; for all c € R.

Theorem 3.2. Consider the statistical decision theory simple setting for unstructured GLM with® =X =Y =

y & IR"Z, iid. obfervation sample X : QO — X™ with the common distribution N'(0,1;), and the loss function be
L(6,0) = p(0 — ) where p : R? — R, is bowl-shapm:ed and lower-semicontinuous. Let Z ~ N'(0,1;), then the
minimax risk is given by

A Z
R*£infsup E[o(0 —0) | 6] = Ep( — ).
infsup E[p(6 ) | ] o(7=)

Furthermore, the upper bound is attained by X = % Yt Xi

Proof. Let Z ~ N(0,1;). To show the upper bound, we take the estimator § = T(X) £ X. For this
estimator, the distribution of (6 — ) and % are identical, and for all § € ®

Elp(o ) |0) =Ep( 7= ).

We lower bound the minimax risk R* by the Bayes risk R}, with the prior 7 = N(0,s1;). We take
the estimate #* =2 E[f | X]. Under the Gaussian prior 7r and estimate §* = [0 | X], we observe that



0 — 6% ~ N(0, 175 ) Which is identical to the distribution of /1%, Z. From Anderson’s Lemma

we obtain that for bowl shaped functions p,
Ep(i) = Enp(6 — 6%) = infEp(0 — 0" + 6* — ) = R".
Vm 0

Since p is lower semicontinuous, sending s — co and applying Fatou’s lemma, we obtain

R* > lim Ry (s) = lim Ep( | /ﬁz) > JEp(\/ZM).
O

Corollary 3.3. Consider a map p: R? — R defined as p(x) = ||x||7 for some q > 0 and arbitrary norm ||-|| on
R?. Then R* = EIZI'
. -

m2

Proof. 1t follows from Theorem applied to bowl shaped loss function || — 8]|. O

Example 3.4 (Applications of Corollary[3.3). Consider the statistical decision theory simple setting
where ® =Y =Y, and the loss function L: 8 x 8 — L(6,0) £ p( — ) is defined in terms of bowl-
shaped loss functions p : R? x R for all x € R¥.

e For ® C R? and p(x) £ ||x||3, the minimax risk is R* = 1E 1Z|? = 4

e For ® C R and p(x) £ ||x||., we have E || Z||,, =< vInd and the minimax risk is R* = /4.

m

e For® CR*%and p(8) = 0| op denote the operator norm that is the maximum singular value.

In this case, E || Z|| o = V/d and so minimax risk is R* = %.

e For ® C R and p(#) = ||0]|r, the minimax risk R* =< ﬁ

Remark 3. We can also phrase the result of Corollary 28.8 in terms of the sample complexity n?(?) as
defined in (28.16). For example, for q = 2 we have n?(?) = ??E[?Z?2]/???. The above examples show
that the scaling of n?(?) with dimension depends on the loss function and the ?rule of thumb? that the
sampling complexity is proportional to the number of parameters need not always hold. Finally, for the
sake of high-probability (as opposed to average) risk bound, consider ?(? ? ??) = 1?? ? ??? ; ?, which is
lower semicontinuous and bowl-shaped. Then the exact expression R? = P ???2? ? ??n??. This result is
stronger since the sample mean is optimal simultaneously for all ?, so that integrating over ? recovers
(28.20).

A Log-concavity
Definition A.1. A measure u € M(IRY) is said to be log-concave if for any A,B € B(RY) and A € [0,1],
we have

H(AA+ (1= A)B) > u(A) u(B) .

Theorem A.2. Let X 2 RY and y € M(X) that has a density f = % € R with respect to Lebesgue measure
vol € M(X). Then, u is log-concave iff f is log-concave.

Example A.3 (Lebesgue measure). Let u = vol be the Lebesgue measure on RY,which satisfies
Theorem [A.2]for f = 1. It follows that for any A € [0,1],

vol(AA + (1 —A)B) £ vol(A)*vol(B)! .



Example A.4 (Guassian measure). Let 4 = A/(0,%) with positive semidefinite covariance matrix
Y. > 0. Then, it has a log-concave density f, since

d 1 1
Inf(x) = =5 In27 — - Indet(X) — ExTz*x

is concave in x.

Theorem A.5 (Brunn-Minkowski). Let d € N and X £ R?. Then for any A,B € B(X),A € [0,1], we get

TN

vol(A + B)1 > vol(A)7 + vol(B)1.
Proof. Let A,B € B(X), and define two unit volume sets

A’ 2 vol(A) 1A, B' £ vol(B) #B.
1
Taking A £ — volth)? _ and A’,B' € B(X) in Example we obtain
vol(A)d +vol(B)d

vol(A + B)
(vol(A)7 + vol(B)d)d

=vol(AA’ + (1 —A)B’) = vol(A ) vol(B) 14 =1.

Lemma A.6. Let K C R? be an even symmetric convex set and X ~ N'(0,Z). Then

maxP{X+ye€ K} =P{X eK}.
yeR4

Proof. From Example[A.4]and Theorem[A 2] it follows that distribution of X is log-concave. Let y € R,
then we observe that (K +y) + 3(K — y) = K from the convexity of K. From the log-concavity of
distribution of X for A = } and measurable sets A = K +y, B £ K —, we obtain

P{XGK}:P{XG;(K+y)+;(K—y)} 2\/P{X6K+y}P{XEK—y}.

The equality is obtained for y = 0. From even symmetry of K, we have K = —K, and hence {X € K —y} =
{X € —K —y}. Since X has an even symmetric distribution, we obtain P{X € —K —y} =P{X € K+ y}.
It follows that P {X € K} > P{X € K+ y}, with the equality at y = 0, and the result follows. O

Lemma A.7 (Anderson). Let X ~ N (0,%) for some positive definite ¥. > 0 and p : R? — R a bowl-shaped
loss function. Then, min, cga Ep(y + X) = Ep(X).

Proof. Denote the sublevel set K. = {x eR?:p(x) < c} for each c € R. Since p is bowl- shaped, K, is

convex and even symmetric. For y € R?, we write the mean
1Ep(y+X):/ P{p(y—l—X)>x}dx:/ P{X +y ¢ Ky}dx.
xeR4 xeR4

From Lemma we have min, .gs P{X +y & Ky} = P{X ¢ K¢}, and it follows that

min Fp(y -+ X) = /XGIR+ P{X ¢ Ki}dx = /xe]R+ P{p(X) > x}dx = Ep(X).
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