
Lecture-14: Tensorization of experiments

1 Tensor product of experiments

Tensor product is a way to define a high-dimensional model from low-dimensional models.

Definition 1.1. Consider parameter space Θi, input space Xi, label space Yi, prediction space Y′i, esti-
mand Ti : Θi → Yi, estimator T̂i : Xi × [0,1]→ Yi, and the corresponding loss function Li : Yi ×Y′i → R for
all i ∈ [d]. We respectively define the tensor product of parameter, input, label, and prediction spaces,
as

Θ ≜ ∏
i∈[d]

Θi, X≜ ∏
i∈[d]

Xi, Y≜ ∏
i∈[d]

Yi, Y′ ≜ ∏
i∈[d]

Y′i.

The corresponding tensor product of estimand T : Θ → Y, estimator T̂ :X× [0,1]d → Y′, and loss function
L : Y× Y′ → R are defined respectively for all θ ∈ Θ, (X,U) ∈ X× [0,1], and (y,y′) ∈ Y× Y′, as

T(θ)≜ (Ti(θi) : i ∈ [d]), T̂(X,U)≜ (T̂i(X,U) : i ∈ [d]), L(y,y′)≜
d

∑
i=1

Li(yi,y′i).

Given statistical experiments Pi ≜
{

Pθi : θi ∈ Θi
}

and for each i ∈ [d], their tensor product refers to the
following statistical experiment

P ≜

{
Pθ ≜

d

∏
i=1

Pθi : θ ∈ Θ

}
.

Remark 1. The observation X consists of independent and not identically distributed Xi ∼ Pθi and the
loss function takes a separable form. This should be contrasted with the multiple-observation model, in
which m i.i.d. observations drawn from the same distribution Pθ are given.

Theorem 1.2 (Minimax risk of tensor product). The following equality holds true for minimax risk of the
tensorized experiment

d

∑
i=1

R∗
B(Pi)⩽ R∗(P)⩽

d

∑
i=1

R∗(Pi).

Consequently, if minimax theorem holds for each experiment, i.e., R∗(Pi) = R∗
B(Pi), then it also holds for the

tensorized experiment, i.e. R∗(P) = ∑d
i=1 R∗(Pi).

Proof. The upper bound follows by taking a sub-class of estimators where T̂i(X,U)≜ T̂i(Xi,Ui). We can
rewrite the minimax risk for the tensorized experiment as

R∗(P) = inf
T̂

sup
θ∈Θ

E[L(T(θ), T̂(X,U)) | θ]⩽ inf
T̂

sup
θ∈Θ

d

∑
i=1

E[Li(Ti(θi), T̂i(X,U)) | θ]

⩽
d

∑
i=1

inf
T̂i(Xi ,Ui)

sup
θi∈Θi

E[Li(Ti(θi), T̂i(Xi,Ui)) | θ] =
d

∑
i=1

R∗(Pi).

For the lower bound, we take a product prior π ≜ ∏d
i=1 πi under which θ : Ω → Θ is an independent

vector, and consequently X : Ω → X is an independent vector. Let T̂i(X,U) ≜ T̂i(X,Ui) where U : Ω →
[0,1]d is an i.i.d. uniform vector independent of X and θ. Defining Ũi ≜ ((Xj : j ∈ [d] \ {i}),Ui), we
observe that Ũi is independent of Xi from independence of X and independence of U. Further, we can
write T̂i(X,Ui) = T̂i(Xi,Ũi) and we observe that

Rπi (T̂i(Xi,Ũi)) = ELi(Ti(θi), T̂i(Xi,Ũi))⩾ inf
T̂i

Rπi (T̂i(Xi,Ũi)) = R∗
πi

.
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From the fact that sup is greater than mean, and the linearity of expectation, we get

sup
θ∈Θ

E[L(T(θ), T̂(X,U)) | θ]⩾ E[L(T(θ), T̂(X,U))] =
d

∑
i=1

ELi(Ti(θi), T̂i(X,U)) =
d

∑
i=1

Rπi (T̂i(Xi,Ũi)).

Since the choices of prior πi and estimator T̂ were arbitrary, the lower bound follows.

Example 1.3 (Unstructured GLM). Consider statistical decision theory simple setting with Y =

Y′ = Θ ≜ Rd. An unstructured GLM statistical model P ≜ (N (θ,σ2 Id) : θ ∈ Θ) with quadratic loss
L : (θ, θ̂) 7→

∥∥θ − θ̂
∥∥2

2 = ∑d
i=1(θi − θ̂i)

2 is simply the d-fold tensor product of the one-dimensional
GLM. Since minimax theorem holds for the GLM, Theorem 1.2 shows the minimax risks sum up to
dσ2.

Remark 2. In general, it is possible that the minimax risk of the tensorized experiment is strictly less
than the sum of individual minimax risks. This may appear surprising since Xi only carries information
about θi and it makes sense intuitively to estimate θi based solely on Xi. However, this is not always
true.

Example 1.4 (Minimax risk of tensorized experiment strictly less than the sum of individual
minimax risks). Consider statistical decision theory simple setting with label space Y= Y′ = Θ≜N,
observation X ≜ θZ where Z : Ω →{0,1} is an independent Bernoulli random variable with EZ = 1

2 ,
and the loss function L : (θ, θ̂) 7→ 1{θ̂<θ}. If Z = 0, then all information about θ is erased. Therefore

for any estimator θ̂ ≜ T̂(X,U), the risk is lower bounded by

Rθ(θ̂) = P(
{

θ̂ < θ
}
| θ)⩾ P(

{
θ̂ < θ, Z = 0

}
| θ) =

1
2

P(
{

θ̂ < θ
}
| {Z = 0} ,θ).

Taking supremum on both sides, we obtain supθ Rθ(θ̂) ⩾
1
2 . It follows that minimax risk R∗ ⩾ 1

2 .
For an estimator T̂(X,U) ≜ X, we obtain risk Rθ(θ̂) = E[1{θZ<θ}] = E1{Z=0} =

1
2 . It follows that

minimax risk R∗ = 1
2 . Recall that R∗

π = 0 in this case for any prior π ∈M(Θ).
Next consider the tensor product of two copies of this experiment with Θ ≜ N2 observation

X ≜ θ ◦ Z where i.i.d. random vector Z : Ω → {0,1}2 with EZ1 =
1
2 , and the loss function L(θ, θ̂) =

1{θ̂1<θ1} + 1{θ̂2<θ2}. Consider the following estimator

θ̂1 = θ̂2 ≜ X1 ∨ X2 + 1{X1=X2=0} = (θ1 ∨ θ2)Z1Z2 + θ1Z1Z̄2 + θ2Z̄1Z2 + Z̄1Z̄2.

Since θ1,θ2 ∈ N, we can write the indicators

1{θ̂1<θ1} = 1{θ2<θ1}Z̄1Z2 + 1{1<θ1}Z̄1Z̄2, 1{θ̂2<θ2} = 1{θ1<θ2}Z1Z̄2 + 1{1<θ2}Z̄1Z̄2.

Since Z is i.i.d. Bernoulli random vector with EZ1 =
1
2 , we get EZ̄1Z2 = EZ1Z̄2 = EZ̄1Z̄2 =

1
4 . There-

fore, for any θ1,θ2 ∈ N, averaging over Z1, Z2, we can find the mean loss

EL(θ, θ̂) = E1{θ̂1<θ1} + E1{θ̂2<θ2} ⩽
1
4
(1{θ1<θ2} + 1{θ2<θ1} + 2)⩽

3
4

.

2 Minimax risk of GLM with non-quadratic loss

Lemma 2.1. Let Z ∼N (0,1). Then for 1 ⩽ q < ∞, we have miny∈R E |y + Z|q = E |Z|q.

Proof. We fix a ∈ R+,y ∈ R, and denote the distribution of random variable Z by FZ : R → [0,1]. From
the symmetry of FZ around 0 and unimodality at 0, we observe that

P{|y + Z|⩽ a} = FZ(a − y)− FZ(−a − y)⩽ FZ(a)− FZ(−a) = P{|Z|⩽ a} .
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The equality is achieved at y = 0, and the result follows from the following observation

E |y + Z|q =
∫

x∈R+

P
{
|y + Z|q > x

}
dx ⩾

∫
x∈R+

P
{
|Z|q > x

}
dx = E |Z|q .

Theorem 2.2. Consider the statistical decision theory simple setting under unstructured Gaussian location model
on Θ = X = Rd, and i.i.d. observation sample X : Ω → Xm with common distribution N (θ,σ2 Id). Denoting
Z ∼N (0, Id), for 1 ⩽ q < ∞, we have

inf
θ̂

sup
θ∈Θ

E[
∥∥θ − θ̂

∥∥q
q | θ] =

1
mq/2 E∥Z∥q

q .

Proof. Consider the statistical decision theory simple setting under unstructured Gaussian location
model on Θ =X=Rd. Denoting estimate θ̂ ≜ T̂(X,U), we observe that the loss function L : Y→ Y′ →R+

defined for all θ, θ̂ ∈ Θ as
∥∥θ − θ̂

∥∥q
q = ∑d

i=1
∣∣θi − θ̂i

∣∣q is separable. We further note that N (θ, Id) is a prod-
uct distribution. Thus the experiment is a d-fold tensor product of the one-dimensional version. From
Theorem 1.2, the minimax risk for this experiment lies between the aggregate minimax and the aggre-
gate worst case Bayes risk for d = 1.

For d = 1, the upper bound is achieved by the sample mean X̄ ≜ 1
m ∑m

i=1 Xi, which is distributed
according to N (θ, 1

m ) and is a sufficient statistic for θ. For the lower bound, we consider a Gaussian
prior π = N (0, s) for which the posterior distribution is also Gaussian Pθ|X = N ( sm

1+sm , s
1+sm ). From

Lemma 2.1, it follows that the Bayes estimator is simply the conditional mean, and hence the Bayes risk
is

R∗
π = E |θ − E[θ | X]| sq =

( s
1 + sm

) q
2
E |Z|q .

Taking limit as s → ∞ proves the matching lower bound.

3 Log-concavity, Anderson’s lemma, and exact minimax risk in GLM

Computing the exact minimax risk is frequently difficult especially in high dimensions. Nevertheless,
for the special case of unconstrained GLM, the minimax risk is known exactly in arbitrary dimensions
for a large collection of loss functions. We have previously seen in Theorem 2.2 that this is possible
for loss functions of the form L : (θ, θ̂) 7→

∥∥θ − θ̂
∥∥q

q. Examining the proof of this result, we note that
the major limitation is that it only applies to separable loss functions, so that tensorization allows us
to reduce the problem to one dimension. This does not apply to (and actually fails) for non-separable
loss, since Theorem 1.2, if applicable, dictates the risk to grow linearly with the dimension, which is not
always the case. We next discuss a more general result that goes beyond separable losses.

Definition 3.1. A function ρ : Rd → R+ is called bowl-shaped if its sublevel set Kc ≜
{

x ∈ Rd : ρ(x)⩽ c
}

is convex and even symmetric i.e. Kc = −Kc for all c ∈ R.

Theorem 3.2. Consider the statistical decision theory simple setting for unstructured GLM with Θ = X= Y=

Y′ ≜ Rd, i.i.d. observation sample X : Ω → Xm with the common distribution N (0, Id), and the loss function be
L(θ, θ̂) = ρ(θ − θ̂) where ρ : Rd → R+ is bowl-shapm:ed and lower-semicontinuous. Let Z ∼N (0, Id), then the
minimax risk is given by

R∗ ≜ inf
θ̂

sup
θ∈Rd

E[ρ(θ − θ̂) | θ] = Eρ
( Z√

m

)
.

Furthermore, the upper bound is attained by X̄ = 1
m ∑m

i=1 Xi.

Proof. Let Z ∼ N (0, Id). To show the upper bound, we take the estimator θ̂ ≜ T̂(X) ≜ X̄. For this
estimator, the distribution of (θ − θ̂) and Z√

m are identical, and for all θ ∈ Θ

E[ρ(θ − θ̂) | θ] = Eρ
( Z√

m

)
.

We lower bound the minimax risk R∗ by the Bayes risk R∗
π with the prior π = N (0, sId). We take

the estimate θ̂∗ ≜ E[θ | X]. Under the Gaussian prior π and estimate θ̂∗ = E[θ | X], we observe that
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θ − θ̂∗ ∼ N (0, s
1+sm ) which is identical to the distribution of

√
s

1+sm Z. From Anderson’s Lemma A.7,
we obtain that for bowl shaped functions ρ,

Eρ
( Z√

m

)
= Eπρ(θ − θ̂∗) = inf

θ̂
Eπρ(θ − θ̂∗ + θ̂∗ − θ̂) = R∗

π .

Since ρ is lower semicontinuous, sending s → ∞ and applying Fatou’s lemma, we obtain

R∗ ⩾ lim
s→∞

R∗
π(s) = lim

s→∞
Eρ

(√ s
1 + sm

Z
)
⩾ Eρ

( Z√
m

)
.

Corollary 3.3. Consider a map ρ : Rd → R+ defined as ρ(x)≜ ∥x∥q for some q > 0 and arbitrary norm ∥·∥ on
Rd. Then R∗ = E∥Z∥q

m
q
2

.

Proof. It follows from Theorem 3.2 applied to bowl shaped loss function
∥∥θ − θ̂

∥∥q
.

Example 3.4 (Applications of Corollary 3.3). Consider the statistical decision theory simple setting
where Θ = Y = Y′, and the loss function L : θ × θ̂ 7→ L(θ, θ̂) ≜ ρ(θ − θ̂) is defined in terms of bowl-
shaped loss functions ρ : Rd × R+ for all x ∈ Rd.

• For Θ ⊆ Rd and ρ(x)≜ ∥x∥2
2, the minimax risk is R∗ ≍ 1

m E∥Z∥2 = d
m .

• For Θ ⊆ Rd and ρ(x)≜ ∥x∥∞, we have E∥Z∥∞ ≍
√

lnd and the minimax risk is R∗ =
√

d
m .

• For Θ ⊆Rd×d and ρ(θ) = ∥θ∥op denote the operator norm that is the maximum singular value.

In this case, E∥Z∥op ≍
√

d and so minimax risk is R∗ =
√

d
m .

• For Θ ⊆ Rd×d and ρ(θ) = ∥θ∥F, the minimax risk R∗ ≍ d√
m .

Remark 3. We can also phrase the result of Corollary 28.8 in terms of the sample complexity n?(?) as
defined in (28.16). For example, for q = 2 we have n?(?) = ??E[?Z?2]/???. The above examples show
that the scaling of n?(?) with dimension depends on the loss function and the ?rule of thumb? that the
sampling complexity is proportional to the number of parameters need not always hold. Finally, for the
sake of high-probability (as opposed to average) risk bound, consider ?(? ? ??) = 1?? ? ??? ¿ ?, which is
lower semicontinuous and bowl-shaped. Then the exact expression R? = P ???Z? ? ??n??. This result is
stronger since the sample mean is optimal simultaneously for all ?, so that integrating over ? recovers
(28.20).

A Log-concavity

Definition A.1. A measure µ ∈M(Rd) is said to be log-concave if for any A, B ∈ B(Rd) and λ ∈ [0,1],
we have

µ(λA + (1 − λ)B)⩾ µ(A)λµ(B)1−λ.

Theorem A.2. Let X≜ Rd and µ ∈M(X) that has a density f ≜ dµ
dvol ∈ RX

+ with respect to Lebesgue measure
vol ∈M(X). Then, µ is log-concave iff f is log-concave.

Example A.3 (Lebesgue measure). Let µ = vol be the Lebesgue measure on Rd,which satisfies
Theorem A.2 for f ≡ 1. It follows that for any λ ∈ [0,1],

vol(λA + (1 − λ)B)≜ vol(A)λ vol(B)1−λ.
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Example A.4 (Guassian measure). Let µ ≜ N (0,Σ) with positive semidefinite covariance matrix
Σ ≻ 0. Then, it has a log-concave density f , since

ln f (x) = −d
2

ln2π − 1
2

lndet(Σ)− 1
2

xTΣ−1x

is concave in x.

Theorem A.5 (Brunn-Minkowski). Let d ∈ N and X≜ Rd. Then for any A, B ∈ B(X),λ ∈ [0,1], we get

vol(A + B)
1
d ⩾ vol(A)

1
d + vol(B)

1
d .

Proof. Let A, B ∈ B(X), and define two unit volume sets

A′ ≜ vol(A)−
1
d A, B′ ≜ vol(B)−

1
d B.

Taking λ ≜ vol(A)
1
d

vol(A)
1
d +vol(B)

1
d

and A′, B′ ∈ B(X) in Example A.3, we obtain

vol(A + B)

(vol(A)
1
d + vol(B)

1
d )d

= vol(λA′ + (1 − λ)B′)⩾ vol(A′)λ vol(B′)1−λ = 1.

Lemma A.6. Let K ⊆ Rd be an even symmetric convex set and X ∼N (0,Σ). Then

max
y∈Rd

P{X + y ∈ K} = P{X ∈ K} .

Proof. From Example A.4 and Theorem A.2, it follows that distribution of X is log-concave. Let y ∈ R,
then we observe that 1

2 (K + y) + 1
2 (K − y) = K from the convexity of K. From the log-concavity of

distribution of X for λ = 1
2 and measurable sets A ≜ K + y, B ≜ K − y, we obtain

P{X ∈ K} = P
{

X ∈ 1
2
(K + y) +

1
2
(K − y)

}
⩾

√
P{X ∈ K + y}P{X ∈ K − y}.

The equality is obtained for y= 0. From even symmetry of K, we have K =−K, and hence {X ∈ K − y}=
{X ∈ −K − y}. Since X has an even symmetric distribution, we obtain P{X ∈ −K − y}= P{X ∈ K + y}.
It follows that P{X ∈ K}⩾ P{X ∈ K + y}, with the equality at y = 0, and the result follows.

Lemma A.7 (Anderson). Let X ∼ N (0,Σ) for some positive definite Σ ≻ 0 and ρ : Rd → R+ a bowl-shaped
loss function. Then, miny∈Rd Eρ(y + X) = Eρ(X).

Proof. Denote the sublevel set Kc ≜
{

x ∈ Rd : ρ(x)⩽ c
}

for each c ∈ R. Since ρ is bowl- shaped, Kc is

convex and even symmetric. For y ∈ Rd, we write the mean

Eρ(y + X) =
∫

x∈R+

P{ρ(y + X) > x}dx =
∫

x∈R+

P{X + y /∈ Kx}dx.

From Lemma A.6, we have miny∈Rd P{X + y /∈ Kx} = P{X /∈ Kx}, and it follows that

min
y∈Rd

Eρ(y + X) =
∫

x∈R+

P{X /∈ Kx}dx =
∫

x∈R+

P{ρ(X) > x}dx = Eρ(X).
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