Lecture-15: Divergence

1 KL divergence
Definition 1.1. Let (X,J) be a measurable space, we define the set of probability measures on X as
M(X) = {P € [0,1)7 : P satisfies probability axioms }

For P,Q € M(X), we say P is absolutely continuous w.r.t. Q and denoted by P < Q if Q(E) = 0 implies
P(E) = 0 for all measurable E € F. If P < Q, then Radon-Nikodym theorem show that there exists a
function g : X — R4 alled a relative density or a Radon-Nikodym derivative of P w.r.t. Q and denoted by
:i% £ g, such that for any measurable set E € J,
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Remark 1. Note that g—g may not be unique. In the simple cases, z% is the likelihood ratio.
(a) For discrete distributions, we can just take L% (x) to be the ratio of probability mass functions.
(b) For continuous distributions, we can take g—g (x) to be the ratio of probability density functions.

Definition 1.2 (Kullback-Leibler (KL) divergence). Adopting the convention 0In0 = 0, we can define
the KL divergence or relative entropy between any P,Q € M (X) with Q being the reference measure, as
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2 f-divergence

Definition 2.1 (f-divergence). Let f: (0,c0) — R be a convex function with f(1) = 0 and define f(0) £
limy o f(x), f'(c0) £ lim, g xf(%) Let P,Q € M(X) for a measurable space (X,J). If P < Q then the

f-divergence is defined as
dp
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Suppose for some common dominating measure y such that P < y and Q < u, we have relative densi-

ties g £ % and p £ Ed%)’ then we have
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where the last term is taken to be zero when P {q = 0} = 0, regardless of the value of f’(c0) which could
be infinite.

Example 2.2 (KL divergence). The map x — f(x) £ xInx results in KL divergence.

Example 2.3 (Total variation). The map x — f(x) £ 1 |x — 1| results in the total variation divergence
(distance). For P,Q € M (X), we define total variation divergence as
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Exercise 2.4. Show that TV(P,Q) =1— [,.d(P A Q) forall P,Q € M(X).

Example 2.5 (x*-divergence). The map x — f(x) £ (x — 1)? results in the x* divergence. For P,Q €

M(X), we define x* divergence as
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We note that we could have chosen f(x) = x> — 1 as well to get the same x? divergence.

Exercise 2.6. Consider two functions f,h : (0,c0) — R differing in a linear term, i.e. h(x) —
f(x) =c(x —1) forall x € (0,00) and some ¢ € R. Show that D, = Dy.

Exercise 2.7. Show that D(P||Q) < In(1 + x?(P||Q)) for all P,Q € M(X).

Example 2.8 (Squared Hellinger distance). The map x + f(x) £ (1 — y/x)? results in squared
Hellinger distance which is defined for any P,Q € M(X) as
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The quantity B(P,Q) £ [,.1/dPdQ is known as the Bhattacharyya coeﬁcicient or Hellinger affinity.

Hellinger distance H : M(X) x M(X) — Ry is defined as H(P,Q) = /H2(P,Q) for all P,Q €
Example 2.9 (Le Cam divergence (distance)). The map x — f(x) £ (;;22 results in Le Cam diver-
gence (distance) which is defined for any P,Q € M(X) as
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Example 2.10 (Jensen-Shannon divergence). The map x — f(x) £ xIn -2 1 +Ing +1 results in
Jensen-Shannon divergence which is defined for any P,Q € M(X) as
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Exercise 2.11. Show the following maps M (X) x M(X) — R define a metric on the space of
probability distributions M (X).

(a) Total variation distance TV.

(b) Hellinger distance H.

(c) Square root of Le Cam divergence v/LC.

(d) Square root of Jensen-Shannon divergence +/JS.




3 Conditional divergence

Definition 3.1 (Conditional divergence). Consider measurable spaces (X, ) and (Y,5) and a pair of
Markov kernels Pyx : X — M(Y) and Qy|x : X — M(Y), and also a probability measure Px on X.

Assuming (Y, 9) is standard Borel measurable space, i.e. § 2 B(Y), we define
D(Pyx[[Qy|x | Px) £ Exupy [D(Pyx—x || Qvx=x)]-

We observe that as usual in Lebesgue integration it is possible that a conditional divergence is finite
even though D(Py|x—.||Qy|x—x) = o for some x in a Px-negligible set.

Theorem 3.2 (Chain rule). For any pair of measures Px y and Qx y we have

|Qx,y) = D(Py|x||Qy|x | Px) + D(Px||Qx),

regardless of the versions of conditional distributions Pyx and Qy|x one chooses.
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Proof. Recall that Pxy = PxPyx and Qxy = QxQy|x- If Px « Qx then Pxy & Qxy and both sides

of chain rule equation are infinity. Thus, we can assume Px < Qx without any loss of generality, and
define relative density Ap = % € R. We next define a kernel Ry|x : X — M(Y) that is a mixture of
kernels Ry|x = %Pyp( + %Qyp(, such that Py|x < Ry|x and Qy|x < Ry|x. We write the corresponding

relative densities for all (x,y) € X x Y, as
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Defining Ry y 20 XRy\ x, we observe that Py y < Rxy and Qxy < Rxy, and we can write down the
corresponding relative densities or all (x,y) € X x Y, as
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From the linearity of expectation, we can write the following equality
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The result follows from the observation that Ep, , InAp(X) = Ep, InAp(X) = D(Px||Qx), and the defi-
nition of conditional divergence which implies that
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4 Data processing inequality

Theorem 4.1 (Data processing inequality). Consider two input distributions Px,Qx € M (X) and a com-
mon Markov kernel Py|x : X — M(Y) such that the joint distributions are Px y = PxPy|x and Qx,y = QxPyx,

and the corresponding output marginal distributions Py = fx dpx(x)Py|x=x and Qy = f:x dQX(x)PY\X=X ‘
Then D(Py||Qy) < D(Px||Qx).

Proof. The result follows from the chain rule of KL divergence. That is,

|Qx,y) = D(Px|y||Qxy | Py) + D(Py[|Qy) = D(Py|x[|Qy|x | Px) + D(Px|Qx)-

Since Qy|x = Py|x, and KL divergence is always positive, we get the result. O
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