
Lecture-15: Divergence

1 KL divergence

Definition 1.1. Let (X,F) be a measurable space, we define the set of probability measures on X as

M(X)≜
{

P ∈ [0,1]F : P satisfies probability axioms
}

.

For P, Q ∈M(X), we say P is absolutely continuous w.r.t. Q and denoted by P ≪ Q if Q(E) = 0 implies
P(E) = 0 for all measurable E ∈ F. If P ≪ Q, then Radon-Nikodym theorem show that there exists a
function g : X → R+ alled a relative density or a Radon-Nikodym derivative of P w.r.t. Q and denoted by
dP
dQ ≜ g, such that for any measurable set E ∈ F,

P(E) =
∫

E
gdQ.

Remark 1. Note that dP
dQ may not be unique. In the simple cases, dP

dQ is the likelihood ratio.

(a) For discrete distributions, we can just take dP
dQ (x) to be the ratio of probability mass functions.

(b) For continuous distributions, we can take dP
dQ (x) to be the ratio of probability density functions.

Definition 1.2 (Kullback-Leibler (KL) divergence). Adopting the convention 0ln0 = 0, we can define
the KL divergence or relative entropy between any P, Q ∈M(X) with Q being the reference measure, as

D(P∥Q)≜

{
EP ln dP

dQ = EQ

[
dP
dQ ln dP

dQ

]
, P ≪ Q,

+∞, P ̸≪ Q.

2 f -divergence

Definition 2.1 ( f -divergence). Let f : (0,∞)→ R be a convex function with f (1) = 0 and define f (0)≜

limx↓0 f (x), f ′(∞) ≜ limx↓0 x f
(

1
x

)
. Let P, Q ∈ M(X) for a measurable space (X,F). If P ≪ Q then the

f -divergence is defined as

D f (P∥Q)≜ EQ f
( dP

dQ

)
.

Suppose for some common dominating measure µ such that P ≪ µ and Q ≪ µ, we have relative densi-
ties q ≜ dQ

dµ and p ≜ dP
dµ , then we have

D f (P∥Q) =
∫

q>0
q f

( p
q

)
dµ + f ′(∞)P{q = 0}

where the last term is taken to be zero when P{q = 0}= 0, regardless of the value of f ′(∞) which could
be infinite.

Example 2.2 (KL divergence). The map x 7→ f (x)≜ x ln x results in KL divergence.

Example 2.3 (Total variation). The map x 7→ f (x)≜ 1
2 |x − 1| results in the total variation divergence

(distance). For P, Q ∈M(X), we define total variation divergence as

TV(P, Q)≜
1
2

EQ

∣∣∣∣ dP
dQ

− 1
∣∣∣∣ = 1

2

∫
X
|dP − dQ| .
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Exercise 2.4. Show that TV(P, Q) = 1 −
∫
X

d(P ∧ Q) for all P, Q ∈M(X).

Example 2.5 (χ2-divergence). The map x 7→ f (x)≜ (x − 1)2 results in the χ2 divergence. For P, Q ∈
M(X), we define χ2 divergence as

χ2(P∥Q)≜ EQ

( dP
dQ

− 1
)2

=
∫
X

(dP − dQ)2

dQ
=

∫
X

dP2

dQ
− 1.

We note that we could have chosen f (x)≜ x2 − 1 as well to get the same χ2 divergence.

Exercise 2.6. Consider two functions f , h : (0,∞) → R+ differing in a linear term, i.e. h(x) −
f (x) = c(x − 1) for all x ∈ (0,∞) and some c ∈ R. Show that Dh = D f .

Exercise 2.7. Show that D(P∥Q)⩽ ln(1 + χ2(P∥Q)) for all P, Q ∈M(X).

Example 2.8 (Squared Hellinger distance). The map x 7→ f (x) ≜ (1 −
√

x)2 results in squared
Hellinger distance which is defined for any P, Q ∈M(X) as

H2(P, Q)≜ EQ

(
1 −

√
dP
dQ

)2
=

∫
X
(
√

dQ −
√

dP)2 = 2 − 2
∫
X

√
dPdQ.

The quantity B(P, Q) ≜
∫
X

√
dPdQ is known as the Bhattacharyya coefficient or Hellinger affinity.

Hellinger distance H : M(X) × M(X) → R+ is defined as H(P, Q) ≜
√

H2(P, Q) for all P, Q ∈
M(X).

Example 2.9 (Le Cam divergence (distance)). The map x 7→ f (x)≜ (1−x)2

2x+2 results in Le Cam diver-
gence (distance) which is defined for any P, Q ∈M(X) as

LC(P, Q)≜ EQ
(1 − dP

dQ )2

2(1 + dP
dQ )

=
1
2

∫
X

(dQ − dP)2

dQ + dP
.

Example 2.10 (Jensen-Shannon divergence). The map x 7→ f (x) ≜ x ln 2x
x+1 + ln 2

x+1 results in
Jensen-Shannon divergence which is defined for any P, Q ∈M(X) as

JS(P, Q)≜ EP ln
2 dP

dQ

1 + dP
dQ

+ EQ ln
2

1 + dP
dQ

= EP ln
dP

1
2 d(P + Q)

+ EQ ln
dQ

1
2 d(P + Q)

= D(P∥1
2
(P + Q)) + D(Q∥1

2
(P + Q)).

Exercise 2.11. Show the following maps M(X)×M(X) → R+ define a metric on the space of
probability distributions M(X).
(a) Total variation distance TV.
(b) Hellinger distance H.
(c) Square root of Le Cam divergence

√
LC.

(d) Square root of Jensen-Shannon divergence
√

JS.
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3 Conditional divergence

Definition 3.1 (Conditional divergence). Consider measurable spaces (X,F) and (Y,G) and a pair of
Markov kernels PY|X : X → M(Y) and QY|X : X → M(Y), and also a probability measure PX on X.
Assuming (Y,G) is standard Borel measurable space, i.e. G≜ B(Y), we define

D(PY|X∥QY|X | PX)≜ Ex∼PX [D(PY|X=x∥QY|X=x)].

We observe that as usual in Lebesgue integration it is possible that a conditional divergence is finite
even though D(PY|X=x∥QY|X=x) = ∞ for some x in a PX-negligible set.

Theorem 3.2 (Chain rule). For any pair of measures PX,Y and QX,Y we have

D(PX,Y∥QX,Y) = D(PY|X∥QY|X | PX) + D(PX∥QX),

regardless of the versions of conditional distributions PY|X and QY|X one chooses.

Proof. Recall that PX,Y = PXPY|X and QX,Y = QXQY|X . If PX ̸≪ QX then PX,Y ̸≪ QX,Y and both sides
of chain rule equation are infinity. Thus, we can assume PX ≪ QX without any loss of generality, and
define relative density λP ≜ dPX

dQX
∈ RX

+ . We next define a kernel RY|X : X → M(Y) that is a mixture of

kernels RY|X ≜ 1
2 PY|X + 1

2 QY|X , such that PY|X ≪ RY|X and QY|X ≪ RY|X . We write the corresponding
relative densities for all (x,y) ∈ X× Y, as

fP(y | x)≜
dPY|X=x

dRY|X=x
(y), fQ(y | x)≜

dQY|X=x

dRY|X=x
(y).

Defining RX,Y ≜ QXRY|X , we observe that PX,Y ≪ RX,Y and QX,Y ≪ RX,Y, and we can write down the
corresponding relative densities or all (x,y) ∈ X× Y, as

dPX,Y

dRX,Y
(x,y) = λP(x) fP(y | x),

dQX,Y

dRX,Y
(x,y) = fQ(y | x).

From the linearity of expectation, we can write the following equality

D(PX,Y∥QX,Y) = EPX,Y ln
dPX,Y

dQX,Y
= EPX,Y ln

λP(X) fP(Y | X)

fQ(Y | X)
= EPX,Y lnλP(X) + EPX,Y ln

fP(Y | X)

fQ(Y | X)
.

The result follows from the observation that EPX,Y lnλP(X) = EPX lnλP(X) = D(PX∥QX), and the defi-
nition of conditional divergence which implies that

EPX,Y ln
fP(Y | X)

fQ(Y | X)
= Ex∼PX EPY|X=x

ln
dPY|X=x

dQY|X=x
= D(PX|Y∥QX|Y | PX).

4 Data processing inequality

Theorem 4.1 (Data processing inequality). Consider two input distributions PX , QX ∈ M(X) and a com-
mon Markov kernel PY|X : X→M(Y) such that the joint distributions are PX,Y = PXPY|X and QX,Y = QXPY|X ,
and the corresponding output marginal distributions PY ≜

∫
X

dPX(x)PY|X=x and QY ≜
∫
X

dQX(x)PY|X=x .
Then D(PY∥QY)⩽ D(PX∥QX).

Proof. The result follows from the chain rule of KL divergence. That is,

D(PX,Y∥QX,Y) = D(PX|Y∥QX|Y | PY) + D(PY∥QY) = D(PY|X∥QY|X | PX) + D(PX∥QX).

Since QY|X = PY|X , and KL divergence is always positive, we get the result.
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