

Lecture-15: Divergence

1 KL divergence

Definition 1.1. Let $(\mathcal{X}, \mathcal{F})$ be a measurable space, we define the set of probability measures on \mathcal{X} as

$$\mathcal{M}(\mathcal{X}) \triangleq \left\{ P \in [0,1]^{\mathcal{F}} : P \text{ satisfies probability axioms} \right\}.$$

For $P, Q \in \mathcal{M}(\mathcal{X})$, we say P is *absolutely continuous* w.r.t. Q and denoted by $P \ll Q$ if $Q(E) = 0$ implies $P(E) = 0$ for all measurable $E \in \mathcal{F}$. If $P \ll Q$, then *Radon-Nikodym theorem* show that there exists a function $g : \mathcal{X} \rightarrow \mathbb{R}_+$ called a *relative density* or a *Radon-Nikodym derivative* of P w.r.t. Q and denoted by $\frac{dP}{dQ} \triangleq g$, such that for any measurable set $E \in \mathcal{F}$,

$$P(E) = \int_E g dQ.$$

Remark 1. Note that $\frac{dP}{dQ}$ may not be unique. In the simple cases, $\frac{dP}{dQ}$ is the likelihood ratio.

- (a) For discrete distributions, we can just take $\frac{dP}{dQ}(x)$ to be the ratio of probability mass functions.
- (b) For continuous distributions, we can take $\frac{dP}{dQ}(x)$ to be the ratio of probability density functions.

Definition 1.2 (Kullback-Leibler (KL) divergence). Adopting the convention $0 \ln 0 = 0$, we can define the *KL divergence* or *relative entropy* between any $P, Q \in \mathcal{M}(\mathcal{X})$ with Q being the reference measure, as

$$D(P\|Q) \triangleq \begin{cases} \mathbb{E}_P \ln \frac{dP}{dQ} = \mathbb{E}_Q \left[\frac{dP}{dQ} \ln \frac{dP}{dQ} \right], & P \ll Q, \\ +\infty, & P \not\ll Q. \end{cases}$$

2 f -divergence

Definition 2.1 (f -divergence). Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a convex function with $f(1) = 0$ and define $f(0) \triangleq \lim_{x \downarrow 0} f(x)$, $f'(\infty) \triangleq \lim_{x \downarrow 0} x f'(\frac{1}{x})$. Let $P, Q \in \mathcal{M}(\mathcal{X})$ for a measurable space $(\mathcal{X}, \mathcal{F})$. If $P \ll Q$ then the f -divergence is defined as

$$D_f(P\|Q) \triangleq \mathbb{E}_Q f\left(\frac{dP}{dQ}\right).$$

Suppose for some common dominating measure μ such that $P \ll \mu$ and $Q \ll \mu$, we have relative densities $q \triangleq \frac{dQ}{d\mu}$ and $p \triangleq \frac{dP}{d\mu}$, then we have

$$D_f(P\|Q) = \int_{q>0} q f\left(\frac{p}{q}\right) d\mu + f'(\infty) P\{q=0\}$$

where the last term is taken to be zero when $P\{q=0\} = 0$, regardless of the value of $f'(\infty)$ which could be infinite.

Example 2.2 (KL divergence). The map $x \mapsto f(x) \triangleq x \ln x$ results in KL divergence.

Example 2.3 (Total variation). The map $x \mapsto f(x) \triangleq \frac{1}{2} |x - 1|$ results in the total variation divergence (distance). For $P, Q \in \mathcal{M}(\mathcal{X})$, we define total variation divergence as

$$\text{TV}(P, Q) \triangleq \frac{1}{2} \mathbb{E}_Q \left| \frac{dP}{dQ} - 1 \right| = \frac{1}{2} \int_{\mathcal{X}} |dP - dQ|.$$

Exercise 2.4. Show that $\text{TV}(P, Q) = 1 - \int_{\mathcal{X}} d(P \wedge Q)$ for all $P, Q \in \mathcal{M}(\mathcal{X})$.

Example 2.5 (χ^2 -divergence). The map $x \mapsto f(x) \triangleq (x - 1)^2$ results in the χ^2 divergence. For $P, Q \in \mathcal{M}(\mathcal{X})$, we define χ^2 divergence as

$$\chi^2(P\|Q) \triangleq \mathbb{E}_Q \left(\frac{dP}{dQ} - 1 \right)^2 = \int_{\mathcal{X}} \frac{(dP - dQ)^2}{dQ} = \int_{\mathcal{X}} \frac{dP^2}{dQ} - 1.$$

We note that we could have chosen $f(x) \triangleq x^2 - 1$ as well to get the same χ^2 divergence.

Exercise 2.6. Consider two functions $f, h : (0, \infty) \rightarrow \mathbb{R}_+$ differing in a linear term, i.e. $h(x) - f(x) = c(x - 1)$ for all $x \in (0, \infty)$ and some $c \in \mathbb{R}$. Show that $D_h = D_f$.

Exercise 2.7. Show that $D(P\|Q) \leq \ln(1 + \chi^2(P\|Q))$ for all $P, Q \in \mathcal{M}(\mathcal{X})$.

Example 2.8 (Squared Hellinger distance). The map $x \mapsto f(x) \triangleq (1 - \sqrt{x})^2$ results in squared Hellinger distance which is defined for any $P, Q \in \mathcal{M}(\mathcal{X})$ as

$$H^2(P, Q) \triangleq \mathbb{E}_Q \left(1 - \sqrt{\frac{dP}{dQ}} \right)^2 = \int_{\mathcal{X}} (\sqrt{dQ} - \sqrt{dP})^2 = 2 - 2 \int_{\mathcal{X}} \sqrt{dPdQ}.$$

The quantity $B(P, Q) \triangleq \int_{\mathcal{X}} \sqrt{dPdQ}$ is known as the *Bhattacharyya coefficient* or *Hellinger affinity*. Hellinger distance $H : \mathcal{M}(\mathcal{X}) \times \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}_+$ is defined as $H(P, Q) \triangleq \sqrt{H^2(P, Q)}$ for all $P, Q \in \mathcal{M}(\mathcal{X})$.

Example 2.9 (Le Cam divergence (distance)). The map $x \mapsto f(x) \triangleq \frac{(1-x)^2}{2x+2}$ results in Le Cam divergence (distance) which is defined for any $P, Q \in \mathcal{M}(\mathcal{X})$ as

$$\text{LC}(P, Q) \triangleq \mathbb{E}_Q \frac{(1 - \frac{dP}{dQ})^2}{2(1 + \frac{dP}{dQ})} = \frac{1}{2} \int_{\mathcal{X}} \frac{(dQ - dP)^2}{dQ + dP}.$$

Example 2.10 (Jensen-Shannon divergence). The map $x \mapsto f(x) \triangleq x \ln \frac{2x}{x+1} + \ln \frac{2}{x+1}$ results in Jensen-Shannon divergence which is defined for any $P, Q \in \mathcal{M}(\mathcal{X})$ as

$$\begin{aligned} \text{JS}(P, Q) &\triangleq \mathbb{E}_P \ln \frac{2 \frac{dP}{dQ}}{1 + \frac{dP}{dQ}} + \mathbb{E}_Q \ln \frac{2}{1 + \frac{dP}{dQ}} = \mathbb{E}_P \ln \frac{dP}{\frac{1}{2}d(P+Q)} + \mathbb{E}_Q \ln \frac{dQ}{\frac{1}{2}d(P+Q)} \\ &= D(P\|\frac{1}{2}(P+Q)) + D(Q\|\frac{1}{2}(P+Q)). \end{aligned}$$

Exercise 2.11. Show the following maps $\mathcal{M}(\mathcal{X}) \times \mathcal{M}(\mathcal{X}) \rightarrow \mathbb{R}_+$ define a metric on the space of probability distributions $\mathcal{M}(\mathcal{X})$.

- (a) Total variation distance TV .
- (b) Hellinger distance H .
- (c) Square root of Le Cam divergence $\sqrt{\text{LC}}$.
- (d) Square root of Jensen-Shannon divergence $\sqrt{\text{JS}}$.

3 Conditional divergence

Definition 3.1 (Conditional divergence). Consider measurable spaces $(\mathcal{X}, \mathcal{F})$ and $(\mathcal{Y}, \mathcal{G})$ and a pair of Markov kernels $P_{Y|X} : \mathcal{X} \rightarrow \mathcal{M}(\mathcal{Y})$ and $Q_{Y|X} : \mathcal{X} \rightarrow \mathcal{M}(\mathcal{Y})$, and also a probability measure P_X on \mathcal{X} . Assuming $(\mathcal{Y}, \mathcal{G})$ is standard Borel measurable space, i.e. $\mathcal{G} \triangleq \mathcal{B}(\mathcal{Y})$, we define

$$D(P_{Y|X} \| Q_{Y|X} | P_X) \triangleq \mathbb{E}_{x \sim P_X} [D(P_{Y|X=x} \| Q_{Y|X=x})].$$

We observe that as usual in Lebesgue integration it is possible that a conditional divergence is finite even though $D(P_{Y|X=x} \| Q_{Y|X=x}) = \infty$ for some x in a P_X -negligible set.

Theorem 3.2 (Chain rule). For any pair of measures $P_{X,Y}$ and $Q_{X,Y}$ we have

$$D(P_{X,Y} \| Q_{X,Y}) = D(P_{Y|X} \| Q_{Y|X} | P_X) + D(P_X \| Q_X),$$

regardless of the versions of conditional distributions $P_{Y|X}$ and $Q_{Y|X}$ one chooses.

Proof. Recall that $P_{X,Y} = P_X P_{Y|X}$ and $Q_{X,Y} = Q_X Q_{Y|X}$. If $P_X \ll Q_X$ then $P_{X,Y} \ll Q_{X,Y}$ and both sides of chain rule equation are infinity. Thus, we can assume $P_X \ll Q_X$ without any loss of generality, and define relative density $\lambda_P \triangleq \frac{dP_X}{dQ_X} \in \mathbb{R}_+^\mathcal{X}$. We next define a kernel $R_{Y|X} : \mathcal{X} \rightarrow \mathcal{M}(\mathcal{Y})$ that is a mixture of kernels $R_{Y|X} \triangleq \frac{1}{2}P_{Y|X} + \frac{1}{2}Q_{Y|X}$, such that $P_{Y|X} \ll R_{Y|X}$ and $Q_{Y|X} \ll R_{Y|X}$. We write the corresponding relative densities for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$, as

$$f_P(y | x) \triangleq \frac{dP_{Y|X=x}}{dR_{Y|X=x}}(y), \quad f_Q(y | x) \triangleq \frac{dQ_{Y|X=x}}{dR_{Y|X=x}}(y).$$

Defining $R_{X,Y} \triangleq Q_X R_{Y|X}$, we observe that $P_{X,Y} \ll R_{X,Y}$ and $Q_{X,Y} \ll R_{X,Y}$, and we can write down the corresponding relative densities or all $(x, y) \in \mathcal{X} \times \mathcal{Y}$, as

$$\frac{dP_{X,Y}}{dR_{X,Y}}(x, y) = \lambda_P(x) f_P(y | x), \quad \frac{dQ_{X,Y}}{dR_{X,Y}}(x, y) = f_Q(y | x).$$

From the linearity of expectation, we can write the following equality

$$D(P_{X,Y} \| Q_{X,Y}) = \mathbb{E}_{P_{X,Y}} \ln \frac{dP_{X,Y}}{dQ_{X,Y}} = \mathbb{E}_{P_{X,Y}} \ln \frac{\lambda_P(X) f_P(Y | X)}{f_Q(Y | X)} = \mathbb{E}_{P_{X,Y}} \ln \lambda_P(X) + \mathbb{E}_{P_{X,Y}} \ln \frac{f_P(Y | X)}{f_Q(Y | X)}.$$

The result follows from the observation that $\mathbb{E}_{P_{X,Y}} \ln \lambda_P(X) = \mathbb{E}_{P_X} \ln \lambda_P(X) = D(P_X \| Q_X)$, and the definition of conditional divergence which implies that

$$\mathbb{E}_{P_{X,Y}} \ln \frac{f_P(Y | X)}{f_Q(Y | X)} = \mathbb{E}_{x \sim P_X} \mathbb{E}_{P_{Y|X=x}} \ln \frac{dP_{Y|X=x}}{dQ_{Y|X=x}} = D(P_{Y|X=x} \| Q_{Y|X=x}) = D(P_{X|Y} \| Q_{X|Y} | P_X).$$

□

4 Data processing inequality

Theorem 4.1 (Data processing inequality). Consider two input distributions $P_X, Q_X \in \mathcal{M}(\mathcal{X})$ and a common Markov kernel $P_{Y|X} : \mathcal{X} \rightarrow \mathcal{M}(\mathcal{Y})$ such that the joint distributions are $P_{X,Y} = P_X P_{Y|X}$ and $Q_{X,Y} = Q_X P_{Y|X}$, and the corresponding output marginal distributions $P_Y \triangleq \int_{\mathcal{X}} dP_X(x) P_{Y|X=x}$ and $Q_Y \triangleq \int_{\mathcal{X}} dQ_X(x) P_{Y|X=x}$. Then $D(P_Y \| Q_Y) \leq D(P_X \| Q_X)$.

Proof. The result follows from the chain rule of KL divergence. That is,

$$D(P_{X,Y} \| Q_{X,Y}) = D(P_{X|Y} \| Q_{X|Y} | P_Y) + D(P_Y \| Q_Y) = D(P_{Y|X} \| Q_{Y|X} | P_X) + D(P_X \| Q_X).$$

Since $Q_{Y|X} = P_{Y|X}$, and KL divergence is always positive, we get the result. □