Lecture-16: Local behavior of divergence

1 Local behavior of divergence

KL divergence is in general not continuous. Nevertheless, it is reasonable to expect that in non-pathological
cases the functional D(P||Q) vanishes when P approaches Q “smoothly”. Due to the smoothness and
strict convexity of xInx at x = 1, it is then also natural to expect that this functional decays “quadrat-
ically”. In this section, we examine this question first along the linear interpolation between P and
Q, then, more generally, in smooth parametrized families of distributions. These properties will be
extended to more general divergences later.

1.1 Local behavior of divergence for mixtures

Let A €[0,1],A £ 1 — A and consider D(AP + AQ||Q), which vanishes as A — 0. Next, we show that this
decay is always sublinear.

Lemma 1.1. The map h: Ry — R defined as h(x) = xInx for all x € R4, is convex.

Proof. We observe that the second derivative of h exists and 1" (x) = % >0 forall x € Ry O

Lemma 1.2. We define a map kg : [0,1] — R as kg(A) = (Ag + A)In(Ag + A) forall A € [0,1] and g € Ry.
Then, the following statements hold true.

(a) kg(0) =0and ke(1) = gIng and kg(A) < AgIng forall A € [0,1].

(b) kg is a convex map in A.

(c) kg(A)/Ais increasing in A € [0,1].

Proof. We define a Bernoulli random variable X : Q — {g,1} with probability mass function Px(g) £

P{X =g} = A, then we observe that k¢(A) = h(EX).

(@) When A =0, we have X = 1 almost surely, resulting in k¢ (0) = H(EX) = h(1) =0. When A =1, we
have X = f almost surely, resulting in k(1) = h(EX) = h(g) = glng. Applying Jensen inequality
for convex map 1, we get kg(A) = h(EX) < Eh(X) = Aglng forall A € [0,1].

(b) The result follows since kg (A) = (i’g’B_\z >0 for all A € [0,1] and f € R;. Alternatively, one can
observe that k¢(A) = h(EX) where EX = gA + A is a composition of an affine and a convex map,
and hence is convex.

(c) For the convex function kg, we have kg(0) — kg(A) > —Aky(A). Rearranging, we get (Aky(A) —
kg(A))/A% > kqe(0) /A% = 0. Recognizing that the left hand side of the previous equation is the first
derivative of k¢(A) /A with respect to A, we get the result.

O
Definition 1.3. KL divergence between two binary distributions is denoted by d(p|q) = D((1—p, p)||(1 -
7,9)=(1- p)ln% + plns forall p,q € [0,1].

Definition 1.4 (Mixture distribution). For A € [0,1] and P,Q € M (X), we define a mixture distribution
P} £ P ¢ M(X).

Proposition 1.5. For mixing parameter A € [0,1] and P,Q € M(X), the following are true for the first derivative
of mixture distribution P* € M(X) with respect to A at 0.

(a) If D(P||Q) < oo, then the one-sided derivative of D(P(|Q) at A = 0 vanishes, i.e. 4 ‘A OD(P/\ Q) =0.
(b) If we exchange the arguments, the criterion is even simpler,i.e. P < Q iff d% ’/\ . D(Q|PY) =o.

Proof. Since lim)_,g D(P*||Q) = 0, we note that £ A:OD(P)‘H Q) =lim, 0 1 D(P*[Q).
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(a) Since D(P||Q) < o, we have P < Q and we define relative density g = 3—5. From the definition of
KL divergence and definition of k; in Lemma 1.2 we get

ID(P[Q) =Eq 5 (Ag + ))In(Ag + 1)] =

kg(A)
A Q '

A

Recall that kg (A) /A < gIng is a monotone increasing and bounded map, where Egglng = D(P||Q) <
oo. Thus, we can apply the monotone convergence theorem to interchange limits and expectation,
to obtain

1 = . . kg(/\) _ / _ _
lim ~D(AP +1Q]|Q) _IEQ[E%T] = Egk,(0) = Eqg(g — 1) =0.

(b) If P &« Q, then there exists E € J such that Q(E) = 0 and p £ P(E) > 0. Consider the binary out-
put space Y = {0,1}, and the processing X ++ Y = 1g(X) where Y : Q — Y. This processing leads
to Markov kernel Py|x : X — M (Y) such that Py|x(1 | x) = 1y,cf}. For input distribution Q and

mixture input distribution P?, the corresponding output distributions are

Qv £ (Q(E),1-Q(E)) = (0,1), Py 2 (AP(E)+AQ(E),1—AP(E) — AQ(E)) = (Ap, 1~ Ap).

Applying data processing inequality for divergence to this processing kernel Py|y, we get
D(Q[P") = D(Qy|[Py) =d(0]Ap) = —In(1 - Ap).

It follows that %’AZOD(QHP)‘) =p>0.
If P < Q, then we define relative density g = dQ and observe that InA <In(A +Ag) < A(g—1).

Dividing by A and assuming A < % we get for some absolute constants ¢y =1,co =1+sup, (5 ‘ % ‘

Hln()_\—l—/\g)‘ <|g—1|v’m;\‘ <g+1+‘ln)‘

< .
1 ‘ 1§+

We recall that Eqg =Eqgl,<q1) + Eqglyies1y S 1+ Eqggingly,.q) < oo. Itfollows that Hln(/_\ + /\g)‘

is Q integrable. Applying dominated convergence theorem to exchange limits and expectation, we
get

lim ~ D(Q||PA)—hm /dQ In(Ag +A) = /thm—ln(Ag—i—A /dQ (1-g)=0.
O

Remark 1. The main message of Proposition is that the function A — D(P*||Q) is 0(A) as A — 0. In
fact, in most cases it is quadratic in A.
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Exercise 1.6. Let A € [0,1],i € {0,1} and P, Q; € M(X), to define mixture distribution Q?‘ £
AQ; + AP;. Show that under suitable technical conditions, the following equations hold

dPy
2| D@m= EgIn o = D(R|IP1),

Py dQo
d)\))\ 0 D(Q111Q0) = Eg, lndT?O — D(P1||Po) + Ep, [1 - ﬁ}
Lemma 1.7. We observe that S, £ fol x(ljs)+s ds = xh‘(’;:(l’;z—l)

Proof. We observe that

S A/‘1 sds _1/1(x(s—1)—s+s)ds 1 /10l7y_71+&+ Inx
o x(1—=s)+s  xJo x(1—s)+s 1-xJxr v x x x—1
Rearranging the terms, we get the result. O



Proposition 1.8 (KL is locally x? like). For any A € [0,1] and distribution P,Q € M(X) we define mixture
distribution P* £ AP + AQ € M(X). Then,

lim 1nf /\ D(PM|Q) = =x*(P||Q).

Proof. We recall that f divergence remains unchanged for a shift of type a(x — 1) for any f: (0,00) — R..
Thus, we observe that for f(x) = xInx — (x — 1), we have

Ds(PQ) = Eof (45) = D(PIQ)

Applying Fatou’s lemma, observing that f(1) = 0, using the L’'Hospital rule to take limits, the fact that
f'(x) = Inx, and definition of x? divergence, we obtain

R e NP 1 f”() 215
liminf - D(P*|Q) =liminf 5 lEQf(AMg)>1‘BQ11rmnf f(A+Ag) Eq(g—1)*=35x*(PlQ).

It follows that if x?(P||Q) = co then so is 7 L D(P*||Q). Thus, we can assume that x?(P||Q) < co without

any loss of generality. From the deflmtlon of Sy in Lemma [1.7) we observe that Sy = i J{ El))2 and the

integrand of Sy is positive and decreasing for x € (0,00). In particular, we have

0<(xf£xl>>2:/01 T /ds—l

Taking x = A + Ag for ¢ £ dQ in the above inequality, we obtain 0 < Azf()_\ +Ag) < (g — 1)%. Since

Eq(g —1)2 = x*(P||Q) < o, applying dominated convergence theorem to exchange limit and expecta-
tion, we obtain

tim L Eof(1+Ag) = Eg lim L £(1+ 4g) = T\ Vg (- 1)2 = L (P10,
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