Lecture-17: Local behavior for parametrized family

1 Parametrized family

Consider a statistical experiment P (@) £ {Py € M(X): 0 € ®} for the parameter space ® C R to be

an open subset. We assume that there exists a measure y € M(X) such that Py < p for all § € ® and

denote the relative density by py = %9.

1.1 Fisher information

Definition 1.1 (Fisher matrix). If the map 6 — py(x) is smooth for each x € X, then we can define score
V £ VyInpg(X) and the Fisher information matrix with respect to the parameter 6 as

Jr(0) £E[VVT | 0] £ Ex.pVVT.

Lemma 1.2. Under suitable reqularity conditions, we have the identity E[V | 6] = 0 and several equivalent
expressions for the Fisher information matrix, such as

Jr(6) = cov[V | 6] =4 /;x iV o /Pa(Vor/Ps)T = —E[Hessg(Inpg(X))] | 6].

Proof. We observe that V = Vylnpy(X) = ﬁVQPQ(X).

(a) Under suitable regularity conditions, we can exchange integration and derivative to obtain the fol-
lowing identity

E[V |6 = [ an(x)pa(x)Volnpa(x) = [ au(x)Vopo(x) = Vo [ du(x)pa(x) =0.
(b) Under the same regularity conditions, we obtain V — E[V | 8] = V, and hence we can write
cov(V'[6) =E[(V —E[V |0))(V —E[V [6])" | 6] =E[VVT | 6] = £ (6).

(c) Since V = mwpe(x), we obtain VVT = WVQPQ(X)(VQPQ(X))T. Furthermore, we have

Vo/po(x) = 5 ;g(x) Vope(x). Combining these two facts, we obtain
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(d) From the definition of Hessian, we can write

J(6) =EIVVT 6] = [ du(x)— = Vopo(x)(Vape(0)" =4 [ dn(x) (Tor/po(0)) (Tor/po(a)
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Under suitable regularity conditions, we can exchange integration and derivative to obtain the fol-
lowing identity
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1.2 Local behavior of divergence for parametrized family

The significance of Fisher information matrix arises from the fact that it gauges the local behavior of
divergence for smooth parametric families.

Lemma 1.3. Under suitable technical conditiondl}

D(P[P%+) = 28" Je (60)¢ + o(IE]) )

Proof. Let P% < u for some measure i € M (X) such that there exists relative density pe, =

P
m . We can
Inpg, (x

) a

write the Taylor series expansion for In pg . #(x) for first two terms, in the neighborhood of
1
In poy+¢(x) = Inpg, (x) + &7 Volnpg (x) + 587 Hessg(Inpg, (x)) + o([12]*)-

Recall that D(P% || P%+¢) £ E n ) L and the result follows from the fact that E[V | 6y] =0. O

X~plo M pg (X

Remark 1. We will establish this fact rigorously later. Property (1) is of paramount importance in statis-
tics. We should remember it as Divergence is locally quadratic on the parameter space, with Hessian given by
the Fisher information matrix.

Exercise 1.4 (KL Divergence for GLM). Consider the Gaussian location model, where the

parametrized distribution for observations is given by P? £ A/(9,%).

(a) Show that Jr(§) =2~ 1.

(b) Consider unconstrained parameter space ® C R?, and Gaussians P% £ A\ (0;,%;) for i €
{0,1}. Assuming detX # 0, show that

D(P%||P%) =~ (80— 01)T= 1(60 — 61) + % (lndet21 — IndetXg + tr(X; % — Id)).
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Remark 2. As another example, note that Proposition ?? is a special case of Property (1) by considering

= AQ + AP parametrized by A € [0,1]. In this case, the Fisher information at A = 0 is simply x?(P||Q).
Nevertheless, Proposition ?? is completely general while the asymptotic expansion (1) is not without
regularity conditions.

Exercise 1.5. Let P,Q € M(X) and ® £ [0,1] and define P? £ 0P +0Q € M( ) Let P,Q € M(X)
and © £ [0,1] and define P? £ 0P + 6Q € M (X). Show that limg | J£(6) = x*(P||Q).

Remark 3. Some useful properties of Fisher information are as follows.

* Reparametrization: It can be seen that if one introduces another parametrization § € ® by means
of a smooth invertible map ® — ©, then denoting the Jacobian of this map A £ 4¢ %5, We can write
the Fisher information matrix for reparametrization as Jr(f) = AT Jr(9)A. So we can see that Jr
transforms similarly to the metric tensor in Riemannian geometry. This idea can be used to define
a Riemannian metric on the parameter space O, called the Fisher-Rao metric.

¢ Additivity: Suppose we are given a sample of i.i.d. observations X : (3 — X™ under common dis-
tribution Py. As such, consider the parametrized family of product distributions {P;”" : 6 € ©},
whose Fisher information matrix is denoted by J&" (). For each 6 € ©, let Py < y for some domi-
nating measure p € M (X), then the relative density is denoted by py £ 4 i Po- Recall that p5™ (X) =
I pe(X ) and hence the score for this sample is V = VgInpg (X) "1 Velnpy(X;), and
HessgInpg™ (X) = ¥/ ; HessgIn pg(X;). From the linearity of expectation, and equlvalent expres-
sion for Fisher information, we obtain J£"(6) = mJ¢(6).

ITo illustrate the subtlety here, consider a scalar location family, i.e. pg(x) = fo(x — 8) for some density fo. In this case, Fisher

712
information Jr(6p) = [ % does not depend on 6 and is well-defined even for compactly supported fy, provided fj vanishes at
the endpoints sufficiently fast. But at the same time the left-hand side of Propertyis infinite for any ¢ > 0. Thus, a more general

2
interpretation for Fisher information is as the coefficient in expansion D(P% || 1 P% 4 1 P%+8) = & J1(6y) + 0(g?). We will discuss
this in more detail.



Lemma 1.6 (Matrix inversion). Let A,C be invertible matrices, then the following identity is true
(A+ucv)t=A"1—Aluct+valu)ylva—.
Proof. Since C is invertible, we have (C~! + VA~1U)~! = C(I + VA~'UC) !, and thus

(I+VATUC) ™' =} (-VATIUC)"=1-VA™! }_ (-UCVA™1)"UC=1- VA~ (I+UCVA~)'UC.

neZy nezZ
Pre-multiplying with A~'UC and post-multiplying with VA~!, we obtain
ATtuct+vatu)ytvat = A7tucvAaT — ATtucvA T (1 + ucvA T tucvAaT!
=A'ucvA~! — A7tucvA N1+ ucvA H "Y1+ UCvVAT! 1)
=AY I+UCVA —D(I+UucvA Y t=A"Y(1— (1+ucva—hH1).
The result follows by observing that A=!(I + UCVA~1)~! = (A+UCV)~ . O

Lemma 1.7. Following identities are true for determinants.
(a) For commutative matrices C, D, we have det(I + CD) = det(I + DC).
(b) Let A be an invertible matrix, then det(A + xyT) = detA x (1 +yT A~ 1x).

Proof. (a) Using the commutative and product property of determinants, we observe that
1

_— — -1 = — n g — — n e —
det(1 1 CD) det(I+CD) detnEZZ: (—CD)"=det(I-C )_ (—DC)"D)=det(I—-C(I+DC)
+ nezy
Let ((x;,A;) : i € [d]) be eigenvector and eigenvalue pairs for I + CD, such that (I + CD)x; = A;x;.
Defining matrix X = [x; ... x4] and A = diag(Ay,...,A,), we obtain
(I+CD)X = [/\1)(1 Adxd] = XA.

Pre-multiplying both sides by D, we obtain (I + DC)DX = DXA, i.e. (DX, A) are the eigenvectors
and eigenvalues. In particular, we have I + CD and I + DC have same eigenvalues and hence the
same determinant.

(b) Taking C = A~!x,D =y and using the product property of determinants, we obtain

det(A +xyT) = det A x det(I + A~ lxyT) =detA x (1 +yT A7 1x).

Example 1.8. Let the input space X £ {0,...,d} and consider a stochastic model P? € M(X) that
generates the observation X : Q — X. Since X is discrete, each P? is a probability mass function of
the form 6, = PY(x) for x € X. It follows that the parameter space ® = M (X). We observe that
621 Yic(4)0i- We take all derivatives only with respect to free parameters ¢ £ (6y,...,0;). In

particular, d%[Pg(x) = Ly—j) — Ly,—) fori € [d]. We can write the score as

VA VyInPl(X) =

1
sy VoP ()

In terms of unit vectors (¢; : i € [d]) and all one vector 1 = Z?zl ej, we can write VyP?(x) =
Zflzl Ie; — L. It follows that

1 d 1
VVT:(PQT))Z(ZIMQ—IXO) _92 ZIXlele + Ixo)-
=1

We can write the Fisher information matrix in terms of all one d x 1 vector 1, as

1 1 1
. B 1y, 1 7
Jr(0) 2E[VVT | 6] = ZG exel —I— dlag( 9(1) + 1_2?2191411 )

By the matrix inversion lemma, we have Iz 1(8) = diag(#) — 66". For the determinant, it follows

from Lemma that det]r(0) = Hl 0 9



Example 1.9 (Location family). In statistics and information theory it is common to talk about
Fisher information of a (single) random variable or a distribution without reference to a parametric
family. In such cases one is implicitly considering a location parameter. Specifically, for any density
po on R? we define a location family of distributions on R by setting dPy(x) £ po(x = 8)dx, for all
6 € RY. Note that Jr(6) here does not depend on 6. For this special case, we will adopt the standard
notation. Let X ~ py, then

J(X) £ J(po) £ Exop, [(VInpo(X))(Vinpo(X))T] = —Ex-p,[Hess(Inpo(X))],

where the second equality requires applicability of integration by parts.
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