
Lecture-21: Mutual information and rate-distortion

1 Mutual information

Lemma 1.1. Let P, Q ∈M(Y) be two measures on space Y, then the map (P, Q) 7→ D(P∥Q) is convex.

Proof. Let X ≜ {0,1} and let PX = QX ∈ M(X) be a Bernoulli distribution with mean λ ∈ [0,1]. Let
P0, P1, Q0, Q1 ∈M(Y) and define Markov kernels

PY|X=0 ≜ P0, PY|X=1 ≜ P1, QY|X=0 ≜ Q0, QY|X=1 ≜ Q1.

We can write the divergence of two joint distributions PX,Y and QX,Y in terms of conditional divergence,
and as

D(PX,Y∥QX,Y) = D(PY|X∥QY|X | PX) = λ̄D(P0∥Q0) + λD(P1∥Q1).

We get the result from the data processing inequality D(PX,Y∥QX,Y) ⩾ D(PY∥QY) for KL divergence
and recalling that PY = EX∼PX PY|X .

Remark 1. The proof shows that for an arbitrary measure of similarity D(P∥Q), the convexity of (P, Q) 7→
D(P∥Q) is equivalent to conditioning increases divergence property of D. Convexity can also be under-
stood as mixing decreases divergence.

Definition 1.2. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the
mutual information is defined as

I(X;Y)≜ D(PX,Y∥PX ⊗ PY).

Lemma 1.3. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the mutual
information I(X;Y) = D(PY|X∥PY | PX).

Proof. From the definition of mutual information and tower property of conditional expectation, we

write I(X;Y) = EPX PY|X ln
dPY|X
dPY

= EPX D(PY|X∥PY) = D(PY|X∥PY | PX).

Theorem 1.4 (Joint vs marginal mutual information). Consider a random vector (X,Y) : Ω → (X× Y)m.
(a) If the channel is memoryless, i.e., PY|X = ∏m

i=1 PYi |Xi
, then I(X;Y)⩽ ∑m

i=1 I(Xi;Yi), with equality iff PY =

∏m
i=1 PYi . Consequently, the (unconstrained) capacity is additive for memoryless channels, i.e.

max
PX

I(X;Y) =
m

∑
i=1

max
PXi

I(Xi;Yi).

(b) If the source is memoryless, i.e., PX = ∏m
i=1 PXi , then I(X;Y) ⩾ ∑m

i=1 I(Xi;Y) with equality iff PX|Y =

PY ∏m
i=1 PXi |Y-almost surely. Consequently,

min
PY|X

I(X;Y) =
m

∑
i=1

min
PY|Xi

I(Xi;Y).

Proof. We utilize the definition of mutual information.
(a) From the definition of mutual information, we write

I(X;Y)−
m

∑
i=1

I(Xi,Yi) =EPX EPY|X ln
dPY|X
dPY

−
m

∑
i=1

EPXi
EPYi |Xi

ln
dPYi |Xi

dPYi

=EPX EPY|X

[
ln

dPY|X
dPY

− ln
∏m

i=1 dPYi |Xi

∏m
i=1 dPYi

]
.

We can rearrange the terms and observe that ln PY
∏m

i=1 PYi
only depends on PY, to get

I(X;Y)−
m

∑
i=1

I(Xi,Yi) = D(PY|X∥
m

∏
i=1

PYi |Xi
| PX)− D(PY∥

m

∏
i=1

PYi ).

When channel is memoryless, D(PY|X∥∏m
i=1 PYi |Xi

| PX) = 0, and we get the result.
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(b) Similarly, switching the role of X and Y, we can write

I(X;Y)−
m

∑
i=1

I(Xi,Y) =EPY EPX|Y

[
ln

dPX|Y
dPX

− ln
∏m

i=1 dPXi |Y
∏m

i=1 dPXi

]
= D(PX|Y∥

m

∏
i=1

PXi |Y | PY)−D(PX∥
m

∏
i=1

PXi ).

When source is memoryless, D(PX∥∏m
i=1 PXi ) = 0, and we get the result.

Remark 2. We observe the following.
(a) For a product channel, the input maximizing the mutual information is a product distribution.
(b) For a product source, the channel minimizing the mutual information is a product channel.

Definition 1.5 (Conditional mutual information). If X,Y, Z : Ω → X× Y× Z, then we define

I(X;Y | Z)≜ D(PX,Y|Z∥PX|ZPY|Z | PZ) = Ez∼PZ I(X;Y | Z = z),

where the product PX|ZPY|Z is a conditional distribution such that (PX|ZPY|Z)(A × B | z) = PX|Z(A |
z)PY|Z(B | z), under which X and Y are independent conditioned on Z.

Lemma 1.6 (Chain rule). For random variables X,Y, Z, we have I(Y, Z; X) = I(X;Y) + I(X; Z | Y).

Proof. By the definition of conditional mutual information and mutual information, we get

I(X; Z |Y) =EPX,Y,Z ln
dPY,Z|X

dPY|XdPZ|X
=EPX,Y,Z ln

dPX,Y,Z

dPY|XdPZ,X
=EPX,Y,Z ln

dPX,Z|YdPY

dPX,ZdPY|X
= I(X; Z |Y)− I(X;Y).

Theorem 1.7 (Data processing inequality). If X → Y → Z is a Markov chain, then I(X; Z)⩽ I(X;Y) with
equality iff X → Z → Y.

Proof. Since X → Y → Z is a Markov chain. Hence, X and Z are conditionally independent given Y, and
I(X; Z | Y) = 0. Applying Kolmogorov identity to I(Y, Z; X), we get

I(Y, Z; X) = I(X;Y) + I(X; Z | Y) = I(X; Z) + I(X;Y | Z).

The result follows from the observation that I(X; Z | Y) = 0 and I(X;Y | Z)⩾ 0.

Lemma 1.8. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the mutual
information I(X;Y) is convex in PY|X .

Proof. Consider three random variables X,Y0,Y1 and two Markov kernels PY0|X , PY1|X : X→M(Y) and
λ ∈ [0,1]. Let W : Ω → {0,1} be an independent Bernoulli random variable with mean EW = λ, to
define Z ≜ W̄Y0 +WY1. Then, we observe that PZ|X = λ̄PY0|X + λPY1|X . Since EX∼PX EPY|X = PY, we get
PZ = EX∼PX EPZ|X = λ̄PY0 + λPY1 . Recall that the map (P, Q) 7→ D(P∥Q) is convex, we have

D(PZ|X ⊗ PX∥PZ ⊗ PX)⩽ λ̄D(PY0|X ⊗ PX∥PY0 ⊗ PX) + λD(PY1|X ⊗ PX∥PY1 ⊗ PX).

The result follows from recognizing that I(X;Y) = D(PX,Y∥PX ⊗ PY).

2 Rate-distortion theory

Definition 2.1 (Rate distortion). Consider parameter space Θ, prediction space Θ′, and loss function
L : Θ × Θ′ → R. We define the rate distortion function ϕθ : R → R for each D ∈ R as

ϕθ(D)≜ inf
Pθ̂|θ :EL(θ,θ̂)⩽D

I(θ; θ̂). (1)

Theorem 2.2 (General converse). Suppose X → W → X̂, where W ∈ [M] and EL(X, X̂)⩽ D. Then

ln M ⩾ ϕX(D)≜ inf
PX̂|X :EL(X,X̂)⩽D

I(X; X̂).
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Proof. Since PX̂|X is a feasible solution by hypothesis, we get ln M ⩾ H(W) ⩾ I(X;W) ⩾ I(X; X̂) ⩾
ϕX(D).

Definition 2.3. We define maximum distortion as Dmax ≜ infθ̂ Eθ∼π L(θ, θ̂) for a deterministic θ̂.

Remark 3. By definition, Dmax is the distortion attainable without any information. Indeed, if Dmax =
EL(X, θ̂) for some fixed θ̂, then this θ̂ is the “default” reconstruction of θ, i.e., the best estimate when we
have no information about θ. Therefore D ⩾ Dmax can be achieved for free. This is the reason for the
notation Dmax despite that it is defined as an infimum.

Theorem 2.4 (Properties). The following properties are true for rate distortion function ϕθ : R → R.
(a) The map ϕθ is convex and non-increasing.
(b) ϕθ(D) = 0 for all D > Dmax.

Proof. Recall that I(θ; θ̂) = Eθ∼π D(Pθ,θ̂∥Pθ ⊗ Pθ̂) = D(Pθ̂|θ∥Pθ̂ | π) = Eθ∼πEPθ̂|θ
ln

dPθ̂|θ
dPθ̂

(a) Since I(θ; θ̂) = D(Pθ̂|θ∥Pθ̂ | π) and Pθ̂ is linear in Pθ̂|θ , it follows that the map Pθ̂|θ 7→ D(Pθ̂|θ∥Pθ̂) is

convex in Pθ̂|θ for fixed prior π ∈M(Θ), as shown in Lemma 1.8. Since ϕθ is infimum of I(θ; θ̂) over
a set of Markov kernels Pθ̂|θ , and the infimum of convex functions is convex, the result follows.

(b) For any D > Dmax we can set θ̂ deterministically. Thus I(θ; θ̂) = 0.

Theorem 2.5 (Single-letterization). For stationary memoryless source S : Ω → Sm with common distribution
PS1 ∈ M(S) and separable loss L such that L(S, Ŝ) = 1

m ∑m
i=1 L1(Si, Ŝi), then ϕS(D) = mϕS1(D) for every m.

Thus,

R(I)(D)≜ limsup
m→∞

1
m

ϕS(D) = ϕS1(D).

Proof. Consider an estimate Ŝ such that PŜ|S ≜ P⊗m
Ŝ1|S1

where EL1(Si, Ŝi) ⩽ D for all i ∈ [m]. Then Ŝ is

a feasible estimate with EL(S, Ŝ) ⩽ D. Since S is memoryless and stationary and PŜ|S has the product

form, the estimate Ŝ is memoryless and stationary. It follows that I(S; Ŝ) = ∑m
i=1 I(Si; Ŝi). Recall that the

rate distortion for m-sized S is defined as

ϕS(D)≜ inf
PŜ|S :EL(S,Ŝ)⩽D

I(S; Ŝ)⩽ inf
PŜ|S=P⊗m

Ŝ1 |S1
:EL1(Si ,Ŝi)⩽D,i∈[m]

m

∑
i=1

I(Si; Ŝi)⩽
m

∑
i=1

inf
PŜi |Si

:EL1(Si ,Ŝi)⩽D
I(Si; Ŝi) =mϕS1(D).

Diving by m on both sides and taking limit m → ∞, we obtain R(I)(D)⩽ ϕS1(D).
For the converse, we focus on any Markov kernel PŜ|S that satisfies the constraint EL(S, Ŝ) ⩽ D.

From the super-additivity property of mutual information for memoryless source in Theorem 1.4 (b), we
obtain I(S; Ŝ)⩾∑m

i=1 I(Si; Ŝi). From the definition of rate distortion function, we obtain ϕS1(EL1(Si; Ŝi))⩽
I(Si; Ŝi). From convexity and non-increasing property of rate distortion function in Theorem 2.4, we ob-
tain

I(S; Ŝ)⩾
m

∑
i=1

I(Si; Ŝi)⩾
m

∑
i=1

ϕS1(EL1(Si; Ŝi))⩾ mϕS1

( 1
m

m

∑
i=1

EL1(Si; Ŝi)
)
⩾ mϕS1(D).

The result follows from taking infimum over all such Markov kernels PŜ|S and the definition of rate
distortion function.

Theorem 2.6 (Rate distortion for Gaussian sources). Let S ∼ N (0,σ2 Id) and L(s, ŝ)≜ ∥s − ŝ∥2
2 for s, ŝ ∈

Rd, then rate distortion function R(D)≜ infPŜ|S :EL(S,Ŝ)⩽D I(S; Ŝ) = d
2 ln+ dσ2

D .

Proof. We first show the result for d = 1. Since Dmax = σ2, we can assume D < σ2 for otherwise there is
nothing to show.
(a) Achievability. Choose S = Ŝ + Z, where Ŝ ∼ N (0,σ2 − D) and independent of Z ∼ N (0, D). In

other words, the backward channel PS|Ŝ is AWGN with noise power D, and the forward channel is

PŜ|S = N ( σ2−D
σ2 S, σ2−D

σ2 D). This is due to the fact that S is Gaussian with mean 0 and variance σ2,
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and the conditional density is

fŜ|S(ŝ | s) =
fS,Ŝ(s, ŝ)

fS(s)
=

1√
2π

(σ2−D)
σ2 D

exp
( s2

2σ2 − ŝ2

2(σ2 − D)
− (s − ŝ)2

2D

)

=
1√

2π
(σ2−D)

σ2 D
exp

(
− s2(σ2 − D)

2σ2D
− ŝ2σ2

2(σ2 − D)D
+

sŝ
D

)

=
1√

2π
(σ2−D)

σ2 D
exp

(
− 1

2 σ2−D
σ2 D

( s2(σ2 − D)

2σ2D
− ŝ2σ2

2(σ2 − D)D
+

sŝ
D

))
.

Then R(D)⩽ I(S; Ŝ) = 1
2 ln σ2

D .
(b) Converse. Let S ∼ N (0,σ2) and PŜ|S be any conditional distribution such that EPL(S, Ŝ) ⩽ D. De-

note the forward channel in the above achievability by P∗
Ŝ|S. Then, we have

I(S; Ŝ) = EP ln
dPS|Ŝ
dP∗

S|Ŝ
+ EP ln

dP∗
S|Ŝ

dPS
= D(PS|Ŝ∥P∗

S|Ŝ | PŜ) + EP ln
dP∗

S|Ŝ
dPS

.

From the non-negativity of KL divergence and definition of P∗
Ŝ|S such that EPL(S, Ŝ)⩽ D, we write

I(S; Ŝ)⩾ EP ln
dP∗

S|Ŝ
dPS

=
1
2

ln
σ2

D
+

1
2

EP

[S2

σ2 − (S − Ŝ)2

D

]
⩾

1
2

ln
σ2

D
⩾ 0.

Finally, for the vector case follows from the scalar case and the same single-letterization argument in
Theorem 2.5 using the convexity of the rate-distortion function.
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