Lecture-21: Mutual information and rate-distortion

1 Mutual information

Lemma 1.1. Let P,Q € M(Y) be two measures on space Y, then the map (P,Q) — D(P||Q) is convex.

Proof. Let X £ {0,1} and let Px = Qx € M (X) be a Bernoulli distribution with mean A € [0,1]. Let
Py, P1,Qo, Q1 € M(Y) and define Markov kernels

Pyjx—0 = Po, Pyx—1= Py, Qyjx=0 = Qo, Qyjx=1= Q1.

We can write the divergence of two joint distributions Py y and Qx y in terms of conditional divergence,
and as
D(Px,y[Qx,y) = D(Pyx[|Qy|x | Px) = AD(Po|[Qo) + AD(P1 Q1)

We get the result from the data processing inequality D(Pxy||Qxy) = D(Py||Qy) for KL divergence
and recalling that Py = Ex.p, Py x. O

Remark 1. The proof shows that for an arbitrary measure of similarity D(P||Q), the convexity of (P,Q) —
D(P||Q) is equivalent to conditioning increases divergence property of D. Convexity can also be under-
stood as mixing decreases divergence.

Definition 1.2. For a random vector (X,Y) : O — X x Y with joint distribution Px y € M(X x Y), the
mutual information is defined as

I[(X;Y) £ D(Px,y|[Px ® Py).
Lemma 1.3. For a random vector (X,Y) : Q@ — X x Y with joint distribution Px y € M(X x Y), the mutual
information 1(X;Y) = D(Py|x||Py | Px).
Proof. From the definition of mutual information and tower property of conditional expectation, we
write I(X;Y) = ]prpy‘xln% = Ep,D(Py x| Py) = D(Pyx||Py | Px). O

Theorem 1.4 (Joint vs marginal mutual information). Consider a random vector (X,Y) : Q3 — (X x Y)™.
(a) If the channel is memoryless, i.e., Py|x =TT Py, x,, then 1(X;Y) < Y34 I(X;;Y;), with equality iff Py =

[T, Py,. Consequently, the (unconstrained) capacity is additive for memoryless channels, i.e.

m
maxI(X;Y) =) maxI(X;Y;).
Px i=1 Px;

(b) If the source is memoryless, i.e., Px = [TiL; Px,, then I(X;Y) > Y% I(X;;Y) with equality iff Pxy =

Py TTiZ, Px,|y-almost surely. Consequently,

m
minI(X;Y) =) minI(X;Y).
Py|x i1 Prix;
Proof. We utilize the definition of mutual information.
(a) From the definition of mutual information, we write
m
I(XY)= ) I(X;,Y;) = Ep,Ep,, In
i=1

dPyix & dPy, x, dPyx  TTZq1dPyx
Py _l;]EPXz-]Emei In dPy, =Epy leX[ln i, n " dPy, ]

We can rearrange the terms and observe that In HmPinY only depends on Py, to get
i=1"Y;

m m m
I(X;Y) = ) 1(X;,Yi) = D(Py x| [Py x, | Px) = D(Py[IT ] Pv,)-
i=1 i=1 i=1

When channel is memoryless, D(Py x| TTiZ; Py, x, | Px) = 0, and we get the result.



(b) Similarly, switching the role of X and Y, we can write

dPx|y_lnH 14P x|y}
dPy [T, dPx,

Ms

I(X:Y) = Y 1(X,,Y) =Ep, Ep, , [ In PX|Y||HPX|Y\PY mepx).

I
—_

i

When source is memoryless, D(Px||TTiZ; Px;) = 0, and we get the result.

Remark 2. We observe the following.
(a) For a product channel, the input maximizing the mutual information is a product distribution.
(b) For a product source, the channel minimizing the mutual information is a product channel.

Definition 1.5 (Conditional mutual information). If X,Y,Z : Q) — X x Y x Z, then we define
(XY |z)= D(Px,y|z||Px|zPy\z | Pz) = Ezp, I(X;Y | Z = 2),

where the product Py, Py 7 is a conditional distribution such that (Px|zPy|z)(A x B | z) = Pxz(A |
z)Py|z(B | z), under which X and Y are independent conditioned on Z.

Lemma 1.6 (Chain rule). For random variables X,Y,Z, we have I(Y,Z;X) = I(X;Y) + I(X;Z | Y).

Proof. By the definition of conditional mutual information and mutual information, we get

ap P APy 7y dP
(XZ|Y)=Ep, I V2X g, g OPxxz g g X2
W dPyxdPy dPy|xdPz,x 2 Gy 7dPy

[(XZ]Y) - I(X;Y).
O

Theorem 1.7 (Data processing inequality). If X — Y — Z is a Markov chain, then 1(X;Z) < I(X;Y) with
equality iff X - Z = Y.

Proof. Since X —Y — Z is a Markov chain. Hence, X and Z are conditionally independent given Y, and
I(X;Z|Y) = 0. Applying Kolmogorov identity to I(Y,Z; X), we get

1Y, Z;X) = 1Y)+ 1(GZ | Y) = [(X2) + [(X;Y | Z).
The result follows from the observation that I(X;Z | Y) =0and I(X;Y | Z) > 0. O

Lemma 1.8. For a random vector (X,Y) : Q@ — X x Y with joint distribution Px y € M(X x Y), the mutual
information 1(X;Y) is convex in Py|x.

Proof. Consider three random variables X, Y, Y1 and two Markov kernels Py |x, Py,|x : X — M(Y) and
A €0,1]. Let W: Q — {0,1} be an independent Bernoulli random variable with mean EW = A, to
define Z £ WY + WY;. Then, we observe that P,y = APy, x + APy, x. Since Exp, JEPy |y = Py, we get
Pz =Ex~pyEPzx = APy, + APy, . Recall that the map (P,Q) — D(P||Q) is convex, we have

D(PZ\X ® Px||Pz ® Px) < KD(PY(”X & Px||Py0 ® Px) + )\D(PY1|X & PXHPy1 ® Px).

The result follows from recognizing that I(X;Y) = D(Px y||Px ® Py). O

2 Rate-distortion theory

Definition 2.1 (Rate distortion). Consider parameter space ©, prediction space @, and loss function
L:0 x @ — R. We define the rate distortion function ¢ : R — R for each D € R as

Po(D) 2 inf  1(6;0). 1)
Pyg:EL(0,9)<D

Theorem 2.2 (General converse). Suppose X — W — X, where W € [M] and EL(X,X) < D. Then

InM > ¢x(D) = inf  I(X;X).
Py EL(X,X)<D



Proof. Since Py y is a feasible solution by hypothesis, we get InM > H (W) > I(X; W) > I(X;X)
¢x (D).

Definition 2.3. We define maximum distortion as Dyax = infyEg.. ﬂL(G,é) for a deterministic 6.

0w

Remark 3. By definition, Dmay is the distortion attainable without any information. Indeed, if Dyax =
EL(X, 9) for some fixed 6, then this @ is the “default” reconstruction of 6, i.e., the best estimate when we
have no information about 6. Therefore D > Dpyax can be achieved for free. This is the reason for the
notation Dpax despite that it is defined as an infimum.

Theorem 2.4 (Properties). The following properties are true for rate distortion function ¢g: R — R.
(a) The map ¢g is convex and non-increasing.
(b) ¢g(D) =0 forall D > Dmax.

Proof. Recall that (6;8) = Eg.xD(Py|[Ps ® Py) = D(Py || Py | 1) = EgrnEp,

9l
(a) Since 1(6;0) = D(Pyjq| Py | 7r) and Py is linear in Py, it follows that the map Pé‘g — D(PyplIPp) i

9\6
ln ap,

convex in Py, for fixed prior 7 € M (®), as shown in Lemma Since ¢y is infimum of 1(8;8) over
a set of Markov kernels Pé| ¢- and the infimum of convex functions is convex, the result follows.

(b) For any D > Dpax we can set § deterministically. Thus 1(6;8) = 0.
O

Theorem 2.5 (Single-letterization). For stationary memoryless source S : Q) — 8™ with common distribution
Ps, € M(8) and separable loss L such that L(S,S5) = LY | L1(S;,5;), then ¢s(D) = m¢s, (D) for every m.
Thus,
1
RU(D) 2 limsup - ¢5(D) = ¢s, (D).

m—o0

Proof. Consider an estimate $ such that PS\S = P®‘S where EL;(S;,$;) < D for all i € [m]. Then S is

a feasible estimate with EL(S,S) < D. Since S is memoryless and stationary and P§| s has the product

form, the estimate S is memoryless and stationary. It follows that I(S;S) = Y7, I(S;;5;). Recall that the
rate distortion for m-sized S is defined as

m m
D)2 inf 1(S;8) < inf I(S inf 1(S;8:)=m D).
¢s(D) Pg g EL(S,$)<D (5:5) Pgjs=P; TS L (S;,8:)<D,i€] m]lZ I;Ps 15, EL1(81,8:)<D 15i5) #5:(D)
Diving by m on both sides and taking limit 1 — co, we obtain R()(D) < ¢s, (D).
For the converse, we focus on any Markov kernel PSA‘ ¢ that satisfies the constraint EL(S, 9) <

From the super—addltwlty property of mutual information for memoryless source in Theorem[1.4] @ we
obtain I(S;5) > Y, I(S;;S;). From the definition of rate distortion function, we obtain ¢g, (EL; (S,, $i)) <

1(S;;S;). From convex1ty and non-increasing property of rate distortion function in Theorem we ob-
tain A . " L m A
1(5;8) = }_1(5i:5) Z§bs1 EL1(5;;5)) = mgs, (E ZELl(Si;Si)) = mes, (D).
i=1 i= i=1
The result follows from taking infimum over all such Markov kernels Py s and the definition of rate
distortion function. O

Theorem 2.6 (Rate distortion for Gaussian sources). Let S ~ N (0, 0'21d) and L(s,8) £ ||s — §||§for s,8€
d o ; s din* do®
R?, then rate distortion function R(D) = mng‘S:JEL(S,SAKD (5;S)=4In ?

Proof. We first show the result for d = 1. Since Dpax = 02, we can assume D < ¢? for otherwise there is

nothing to show.

(a) Achievability. Choose S = S + Z, where § ~ NV(0,02 — D) and independent of Z ~ A/(0,D). In
other words the backward channel Py is AWGN with noise power D, and the forward channel is

Py = =N ( —Dg o D). This is due to the fact that S is Gaussian with mean 0 and variance o2,




and the conditional density is

fss(s,8) 1 s* 8 (s—9)°
fasGls) ==y = Zn(az_ZD)DeXp(zafz(az—D)_ )
$2(02 — D) 8202 s$
202D 2(c?-D)D " 5)

(0—

ﬁ

Then R(D) < 1(S5;8) = 1In%.
(b) Converse. Let S ~ N (0,0?) and Pg|g be any conditional distribution such that E pL(S,5) < D. De-

o -
( 1 s2(0? — D) 8202 n s§)> .

22Dp\ 202D "~ 2(c>-D)D ' D

note the forward channel in the above achievability by P} 35" Then, we have
E ln SIS +E lnL ;|§ D +E d§|5
I .
(S'S) P dP;‘lS P dPs (P ) P dpg °

From the non-negativity of KL divergence and definition of P, S such that EpL(S, S ) < D, we write

5 |

N

I(5;8) >

dP* 2 2 8\2

s 1. o= 1 s¢ (§-5) 1, o
= SEp[2 T2 st T s

"aps 2D "2 [(ﬂ D } ko)

Finally, for the vector case follows from the scalar case and the same single-letterization argument in
Theorem [2.5|using the convexity of the rate-distortion function. O
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