
Lecture-22: Mutual Information Method

1 Introduction

In this chapter we describe a strategy for proving statistical lower bound we call the mutual informa-
tion method (MIM), which entails comparing the amount of information data provides with the mini-
mum amount of information needed to achieve a certain estimation accuracy. The main information-
theoretical ingredient is the mutual information data-processing inequality.

Definition 1.1. The quantity I(θ; X) is the amount of information provided by the data X about the
latent parameter θ. We define the capacity of the channel PX|θ by maximizing over all priors, i.e.

I(θ; X)⩽ sup
π∈P(Θ)

I(θ; X)≜ C. (1)

Theorem 1.2 (Mutual information method (MIM)). Consider a simple statistical decision theory setting
with parameter space Θ, prediction space Θ̂, estimate θ̂ : X× [0,1]→ Θ̂ for external randomness U : Ω → [0,1]
independent of everything, and loss function L : Θ × Θ̂ → R. If π ∈ M(Θ) is a prior on the parameter space,
then minimax and Bayes risk are lower bounded as

R∗ ⩾ R∗
π = inf

Pθ̂|θ
EL(θ, θ̂)⩾ ϕ−1(I(θ; X))⩾ ϕ−1(C). (2)

Proof. Fix some prior π ∈M(Θ) and we will lower bound the Bayes risk R∗
π of estimating θ ∼ π on the

basis of observation X with respect to loss function L : Θ× Θ̂ → R. Let θ̂(X,U) be an estimator such that
E[L(θ, θ̂)] ⩽ D. Then we have the Markov chain θ → X → θ̂. Applying the data processing inequality
for mutual information, we have

ϕθ(D)≜ inf
Pθ̂|θ :EL(θ,θ̂)⩽D

I(θ; θ̂)⩽ I(θ; θ̂)⩽ I(θ; X)⩽ sup
π∈M(Θ)

I(θ; X) = C. (3)

Recall that for any estimator θ̂ with loss EL(θ, θ̂) = D, we have ϕθ(EL(θ, θ̂)) ⩽ I(θ; θ̂) ⩽ I(θ; X) ⩽ C.
Since the rate-distortion function ϕθ is non-increasing, we obtain that

EL(θ, θ̂)⩾ ϕ−1(I(θ; θ̂))⩾ ϕ−1(I(θ; X))⩾ ϕ−1(C).

Minimizing the loss EL(θ, θ̂) over all estimation kernels Pθ̂|θ , we obtain the lower bound on the Bayes
and hence the minimax risk.

Remark 1. We observe the following for the above inequality.
(a) The quantity infPθ̂|θ :EL(θ,θ̂)⩽D I(θ; θ̂) is the minimum amount of information required to achieve a

given estimation accuracy, which is precisely the rate-distortion ϕ(D) ≡ ϕθ(D).
(b) The reasoning of the mutual information method is reminiscent of the converse proof for joint-

source channel coding. As such, the argument here retains the flavor of “source-channel separa-
tion”, in that the lower bound in (3) depends only on the prior (source) and the loss function, while
the capacity upper bound (1) depends only on the statistical model (channel).

We next discuss a sequence of examples to illustrate the MIM and its execution:
(a) Denoising a vector in Gaussian noise, where we will compute the exact minimax risk;
(b) Denoising a sparse vector, where we determine the sharp minimax rate;
(c) Community detection, where the goal is to recover a dense subgraph planted in a bigger Erdös-

Rényi graph.
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Subsequently, we will discuss three popular approaches for, namely, Le Cam’s method, Assouad’s lemma,
and Fano’s method. All three follow from the mutual information method, corresponding to different
choice of prior π ∈M(θ), namely, the uniform distribution over a two-point set {θ0,θ1}, the hypercube
{0,1}d, and a packing. While these methods are highly useful in determining the minimax rate for many
problems, they are often loose with constant factors compared to the MIM. We discuss the problem of
how and when is non-trivial estimation achievable by applying the MIM. For this purpose, none of the
three methods works.

1.1 GLM revisited and the Shannon lower bound

Example 1.3 (GLM). Consider the d-dimensional GLM, where we observe an i.i.d. sample X : Ω →
Rm with common distribution N (θ, Id) and parameter θ ∈ Θ. Denote by R∗(Θ) the minimax risk
with respect to the quadratic loss L : (θ, θ̂) 7→

∥∥θ̂ − θ
∥∥2

2. First, let us consider the unconstrained
model where Θ ≜ Rd. Estimating using the sample mean X̄ ≜ 1

m ∑m
i=1 Xi ∼ N (θ, 1

m Id), we achieve
the upper bound R∗(Rd) ⩽ d

m . This turns out to be the exact minimax risk, as seen by computing
the Bayes risk for Gaussian priors. Next we apply the mutual information method to obtain the
same matching lower bound without evaluating the Bayes risk.

Again, let us consider θ ∼ N (0, sId) for some s > 0. We know from the Gaussian rate-distortion
function that

ϕ(D)≜ inf
Pθ̂|θ :E∥θ−θ̂∥2

2⩽D
I(θ; θ̂) =

d
2

ln
sd
D
1{D<sd}.

It follows that ϕ−1(x) = sde−
2x
d for all x ∈ R+. Using the sufficiency of X̄ and the formula of Gaus-

sian channel capacity A.7, the mutual information between the parameter and the data can be com-
puted as

I(θ; X) = I(θ; X̄) =
d
2

ln(1 + sm).

It then follows from (2) that R∗
π ⩾ ϕ−1(I(θ; X)) = sd

1+sm , which in fact matches the exact Bayes risk.
Sending s → ∞ we recover the result R∗(Rd) = d

m .

In the above unconstrained GLM, we are able to compute everything in closed form when applying the
mutual information method. Such exact expressions are rarely available in more complicated models
in which case various bounds on the mutual information will prove useful. Next, let us consider the
GLM with bounded means, where the parameter space Θ ≜ B(ρ)≜

{
θ ∈ Rd : ∥θ∥2 ⩽ ρ

}
is the ℓ2-ball of

radius ρ centered at zero. In this case there is no known closed- form formula for the minimax quadratic
risk even in one dimension1. Nevertheless, the next result determines the sharp minimax rate, which
characterizes the minimax risk up to universal constant factors.

Theorem 1.4 (Bounded GLM). R∗(B(ρ)) ≍ d
m ∧ ρ2.

Proof. The upper bound R∗(B(ρ))⩽ d
m ∧ ρ2 follows from considering the estimator θ̂ = X̄ and θ̂ = 0. To

prove the lower bound, we apply the mutual information method with a uniform prior θ ∼ U where
U : Ω → B(r) is a uniform random variable and r ∈ [0,ρ] is to be optimized. The mutual information
can be upper bound using the AWGN capacity as

I(θ; X) = I(θ; X̄)⩽ sup
Pθ :E∥θ∥2

2⩽r

I(θ;θ +
1√
m

Z) =
d
2

ln
(

1 +
mr2

d

)
⩽

mr2

2
,

where Z ∼ N (0, Id). Alternatively, we can use Corollary 5.8 to bound the capacity (as information
radius) by the KL diameter, which yields the same bound within constant factors,

I(θ; X)⩽ sup
∥θ∥⩽r

I(θ;θ +
1√
m

Z)⩽ max
θ,θ′∈B(r)

D(N (θ,
1
m

Id)∥N (θ′,
1
m

Id)) = 2mr2.

1It is known that there exists some ρ0 depending on d/m such that for all ρ ⩽ ρ0, the uniform prior over the sphere of radius ρ
is exactly least favorable (see [81] for d = 1 and [48] for d > 1.)
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For the lower bound, due to the lack of closed-form formula for the rate-distortion function for uniform
distribution over Euclidean balls, we apply the Shannon lower bound (SLB) from Section 26.1. Since θ
has an isotropic distribution, applying Theorem 26.3 yields

inf
Pθ̃|θ :E∥θ−θ̃∥2

⩽D
I(θ; θ̃)⩾ h(θ) +

d
2

ln
2πed

D
⩾

d
2

ln
cr2

D
,

for some universal constant c, where the last inequality is because for θ ∼ U uniformly distributed over
B(r), h(θ) = lnvol(B(r)) = d lnr + lnvol(B(1)) and the volume of a unit Euclidean ball in d dimensions

satisfies (recall (27.14)) vol(B(1))
1
d ≍ 1√

d
. Finally, applying (2) yields 1

2 ln cr2

R∗ ⩽ mr2

2 , i.e., R∗ ⩾ cr2e−
mr2

d .

Optimizing over r and using the fact that supx∈(0,1) xe−ax = 1
ea1{a⩾1} + e−a

1{a<1}, we have

R∗ ⩾ sup
r∈[0,ρ]

cr2e−
mr2

d ≍ d
m

∧ ρ2.

Remark 2. Comparing the bounded GLM with unconstrained GLM case, we see that if ρ2 > d
m , it is rate-

optimal to ignore the bounded-norm constraint. If ρ2 < d
m , we can discard all observations and estimate

by zero, because data do not provide a better resolution than the prior information.

A Channel capacity

A.1 Geometric interpretation of channel capacity

Mutual information (MI) can be understood as a weighted “distance” from the conditional distributions
to the marginal distribution. Indeed, for a discrete random variable X : Ω → X, we have

I(X;Y) = D(PY|X∥PY | PX) = ∑
x∈X

D(PY|X=x∥PY)PX(x).

Furthermore, it turns out that PY, similar to the center of gravity, minimizes this weighted distance
and thus can be thought as the best approximation for the “center” of the collection of distributions{

PY|X=x : x ∈ X
}

with weights given by PX . We formalize these results in this section and start with the
proof of a “golden formula”.

Theorem A.1 (Golden formula). For any QY we have D(PY|X∥QY | PX) = I(X;Y) + D(PY∥QY). Thus, if
D(PY∥QY) < ∞, then I(X;Y) = D(PY|X∥QY | PX)− D(PY∥QY).

Proof. In the discrete case and ignoring the possibility of dividing by zero, the argument is really simple.
simple. We just need to write

I(X;Y) = EPX,Y ln
PY|X
PY

= EPX,Y ln
PY|XQY

PYQY
,

and then expand ln
PY|X QY
PY QY

= ln
PY|X
QY

− ln QY
PY

. The argument below is a rigorous implementation of this
idea.

First, notice that by Theorem 2.16(e) we have D(PY|X∥QY | PX)⩾ D(PY∥QY) and thus if D(PY∥QY) =

∞ then both sides of (4.2) are infinite. Thus, we assume D(PY∥QY) < ∞ and in particular PY ≪ QY.
Rewriting LHS of (4.2) via the chain rule (2.24) we see that Theorem amounts to proving

D(PX,Y∥PXQY) = D(PX,Y∥PXPY) + D(PY∥QY).

The case of D(PX,Y∥PXQY) = D(PX,Y∥PXPY) = ∞ is clear. Thus, we can assume at least one of these
divergences is finite, and, hence, also PX,Y ≪ PXQY. Let λ(y)≜ dPY

dQY
(y). Since λ(Y)> 0, PY-a.s., applying

the definition of Log in (2.10), we can write

EPY lnλ(Y) = EPX,Y Log
λ(Y)

1
.
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Notice that the same λ(y) is also the density dPXPY
dPX QY

(x,y) of the product measure PXPY with respect
PXQY. Therefore, the RHS of (4.4) by (2.11) applied with µ = PXQY coincides with D(PX,Y∥PXQY)−
D(PX,Y∥PXPY), while the LHS of (4.4) by (2.13) equals D(PY∥QY). Thus, we have shown the required
D(PY∥QY) = D(PX,Y∥PXQY)− D(PX,Y∥PXPY).

Corollary A.2 (Mutual information as center of gravity). For any QY we have I(X;Y) ⩽ D(PY|X∥QY |
PX). Consequently I(X;Y) = minQY D(PY|X∥QY | PX). If I(X;Y) < ∞, the unique minimizer is QY = PY .

Theorem A.3. For any Markov kernel QX|Y such that QX|Y=y ≪ PX for PY-a.e. y we have

I(X;Y)⩾ EPX,Y ln
dQX|Y

dPX
.

If I(X;Y) < ∞, then I(X;Y) = supQX|Y≪PX
EPX,Y ln

dQX|Y
dPX

, where the supremum is over Markov kernels QX|Y
as in the first sentence.

Proof. Since modifying QX|Y=y on a negligible set of y’s does not change the expectations, we will
assume that QX|Y=y ≪ PY for every y. If I(X;Y) = ∞ then there is nothing to prove. So we assume
I(X;Y) < ∞, which implies PX,Y ≪ PXPY. Then by Lemma 3.3, we have that PX|Y=y ≪ PX for almost

every y. Choose any such y and apply (2.11) with µ = PX and noticing Log
dQX|Y=y

dPX
= lndQX|Y=ydPX , we

get
dQX|Y=y

dPX
= D(PX|Y=y∥PX)− D(PX|Y=y∥QX|Y=y),

identity over y we obtain EPX|Y=y which is applicable since the first term is finite for a.e. y by (3.1).
Taking expectation of the previous identity over y, we obtain

EPX,Y [ln
dQX|Y

dPX
] = I(X;Y)− D(PX|Y∥QX|Y | PY)⩽ I(X;Y),

implying the first part. The equality for I(X;Y) < ∞ follows by taking QX|Y = PX|Y, which satisfies the
conditions on Q when I(X;Y) < ∞.

A.2 Saddle point of mutual information

Definition A.4. Let P be a convex set of distributions on X. Suppose there exists P∗
X ∈ P , called a

capacity-achieving input distribution, such that

C ≜ I(P∗
X , PY|X) = sup

PX∈P
I(PX , PY|X).

Then P∗
Y ≜ PY|X ◦ PX is called a capacity-achieving output distribution.

Theorem A.5 (Saddle point). Let P be a convex set of distributions on X. Then for all PX ∈ P and for all QY,
we have

D(PY|X∥P∗
Y | PX)⩽ D(PY|X∥P∗

Y | P∗
X)⩽ D(PY|X∥QY | P∗

X). (4)

Proof. Right inequality in (4) follows from C = I(P∗
X , PY|X) =minQY D(PY|X∥QY | P∗

X) from Corollary A.2.
The left inequality in (4) is trivial when C = ∞. Hence, we assume that C < ∞ without any loss of gen-
erality. Therefore, I(PX , PY|X) ⩽ C∞ for all PX ∈ P . Let PXλ

= λPX + λP∗
X ∈ P and PYλ

= PY|X ◦ PXλ
.

Clearly, PYλ
= λPY + λP∗

Y, where PY = PY|X ◦ PX . Consequently, we have the following chain

C ⩾ I(Xλ;Yλ) = D(PY|X∥PYλ
| PXλ

) = λD(PY|X∥PYλ
| PX) + λ̄D(PY|X∥PYλ

| P∗
X)

⩾ λD(PY|X∥PYλ
| PX) + λ̄C = λD(PX,Y∥PXPYλ

) + λ̄C,

where inequality follows from the second inequality of (4) which is already shown. Thus, subtracting
λ̄C and dividing by λ we get D(PX,Y∥PXPYλ

) ⩽ C and the proof is completed by taking liminfλ→0 and
applying the lower semincontinuity of divergence (Theorem 4.9).

Corollary A.6. In addition to the assumptions of Theorem A.5, suppose C < ∞. Then the capacity-achieving
output distribution P∗

Y is unique. It satisfies the property that for any PY induced by some PX ∈ P , i.e. PY =
PY|X ◦ PX , we have D(PY∥P∗

Y)⩽ C < ∞ and in particular PY ≪ P∗
Y.
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Proof. The statement is I(PX , PY|X) = C implies PY = P∗
Y. Indeed

C = D(PY|X∥PY | PX) = D(PY|X∥P∗
Y | PX)− D(PY∥P∗

Y)⩽ D(PY|X∥P∗
Y | P∗

X)− D(PY∥P∗
Y) = C − D(PY∥P∗

Y)

implies PY = P∗
Y. The statement D(PY∥P∗

Y) ⩽ C < ∞ follows from the left inequality in (4) and “condi-
tioning increases divergence” property in Theorem 2.16.

A.3 Gaussian channel capacity

Theorem A.7 (Gaussian channel capacity). Consider two independent zero mean Gaussian random variables
Xg ∼N (0,σ2

X) and Ng ∼N (0,σ2
N). Then the following statement are true.

(a) Gaussian capacity. C = I(Xg; Xg + Ng) =
1
2 ln

(
1 + σ2

X
σ2

N

)
.

(b) Gaussian input is the best for Gaussian noise. For all random variables X with variance Var(X) ⩽ σ2
X

independent of Ng, we have I(X; X + Ng)⩽ I(Xg; Xg + Ng) with equality iff FX = FXg .
(c) Gaussian noise is the worst for Gaussian input. For all random variables N such that EXgN = 0 and

EN2 ⩽ σ2
N , we have I(Xg; Xg + N)⩾ I(Xg; Xg + Ng) with equality iff FN = FNg and N independent of Xg.

Proof. WLOG, we assume that all random variables have zero mean. Let Yg ≜ Xg + Ng. Recall that

C = 1
2 ln

(
1 + σ2

X
σ2

N

)
, and define

f (x)≜ D(PYg |Xg=x∥PYg) = D(N (x,σ2
N)∥N (0,σ2

X + σ2
N)) = C +

1
2
(x2 − σ2

X)

σ2
X + σ2

N
.

(a) Compute I(Xg; Xg + Ng) = E f (Xg) = C.
(b) Recall the inf-representation from Corollary A.2 that implies I(X;Y) = minQ D(PY|X∥Q | PX), i.e.

I(X; X + Ng)⩽ D(PYg |Xg∥PYg | PX) = E f (X)⩽ C < ∞.

Furthermore, if I(X; X + Ng) = C, then the uniqueness of the capacity-achieving output distribution
from Corollary A.6, we get PY = PYg . But PY = PX ∗ N (0,σ2

N),where ∗ denotes convolution. Then it
must be that X ∼N (0,σ2

X) simply by considering characteristic functions,

ΨX(t)e−
1
2 σ2

N t2
= e−

1
2 (σ

2
X+σ2

N)t2
.

It follows that ΨX(t) = e−
1
2 σ2

X t2
, and therefore X ∼N (0,σ2

X).
(c) Let Y = Xg + N and let PY|Xg be the associated kernel such that EXgN = 0 and EN2 ⩽ σ2

N . It follows
that EY2 = EN2 + EX2

g ⩽ σ2
N + σ2

X . Note that here we only assume that N is uncorrelated with Xg,
and not necessarily independent. Since PXg |Xg+Ng ≪ PXg , we get from Theorem A.3

I(Xg;Y)⩾ EPXg ,Y ln
dPXg |Yg(Xg | Y)

dPXg(Xg)
= EPXg ,Y ln

dPYg |Xg(Y | Xg)

dPYg(Y)
= C +

1
2

E
[ Y2

σ2
X + σ2

N
− N2

σ2
N

]
= C +

1
2

σ2
X

σ2
X + σ2

N

(
1 − EN2

σ2
N

)
⩾ C.

From Theorem A.3, the conditions for first equality in above equation requires

D(PXg |Y∥PXg |Yg | PY) = 0.

Thus, PXg |Y = PXg |Yg , i.e., Xg is conditionally Gaussian and PXg |Y=y = N (by, c2) for some constants
b and c. In other words, under PXgY, we have Xg = bY + cZ where Z is a Gaussian random vari-
able independent of Y. This implies that Y must be Gaussian itself by Cramer’s Theorem [106] or
simply by considering characteristic functions, where ΨY(t)ect2

= ec′t2
implies ΨY(t) = ec′′t2

, i.e. Y
is Gaussian. Therefore, (Xg,Y) must be jointly Gaussian and hence N = Y − Xg is Gaussian. Thus
we conclude that it is only possible to attain I(Xg; Xg + N) = C if N is Gaussian of variance σ2

N and
independent of Xg.

Remark 3. This result encodes extremality properties of the normal distribution: for the AWGN channel,
Gaussian input is the most favorable, i.e. attains the maximum mutual information or capacity, while
for a general additive noise channel the least favorable noise is Gaussian. For a vector version of the
former statement see Exercise I.9.
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