Lecture-01: Introduction

1 Introduction

Our objective is to provide a data driven framework for inference, prediction, decision, and model construc-
tion. We will work under the following statistical framework, where we will make statistical assumptions
about the underlying phenomena, i.e. on the data generation process. This framework allows a formal
theory that can define learning, generalization, overfitting, and characterize the performance of learning
algorithms, leading to design of better algorithms.

2 Setting

Definition 2.1 (Examples, features, and input space). Examples are items or data instances. An example is
typically represented by a vector x € X, where the components of an example are its features. The set of all
possible examples is called the input space or feature set and denoted by X.

Remark 1. Feature extraction from examples is a domain-specific task done by the experts, and is critical
to the successful prediction. If an example has N attributes and all of them can be represented by real
numbers, then the feature set or input space X = RN with N > 1.

Definition 2.2 (Labels, output space, and prediction space). Labels or targets are values of categories
assigned to examples. The set of all possible labels is called the output space and denoted by Y. The set of all
predicted labels is called the prediction space and denoted by Y'.

Remark 2. Labels are discrete for classification and real-valued for regression. For binary classification,
output space could be Y = {0,1} or {—1,1}. For regression, output space could be Y = R?. Set of predictions
Y may not necessarily be equal to the set of labels Y.

2.1 Concept and hypothesis set

Definition 2.3 (Concepts). A mapping from input space to output space is called a concept and denoted by
c: X — Y. The set of all concepts is called the concept class and denoted by C.

Example 2.4. For binary classification an output space is Y = {0,1}, and any concept ¢ can be identified
by the set Ac = {x € X:c(x) =1} such that c(x) = Ljyca} = 14 (x).

Example 2.5. The set of all triangles, rectangles, circles, lines in the plane are all examples of concept
classes.

Definition 2.6 (Hypothesis). The set of all possible candidate concepts that map features to predicted labels
is called the hypothesis class and denoted by H C (Y')X. A consistent hypothesis set contains the concept to
learn, and an inconsistent hypothesis set doesn’t contain it.

Remark 3. Let ¢ : X — Y be the true concept, and 11 : X — Y’ be a hypothesis, then y = ¢(x) is the label for an
example x and y’ = h(x) is the predicted output for a hypothesis h.



2.2 Sample

Assumption 2.7. All examples in X are identically and independently distributed (i.i.d.) with a fixed but
unknown underlying distribution D € M (X).

Definition 2.8 (Sample). We have a sample x € X" of size m generated i.i.d. according to the distribution D.
For a concept ¢ : X — Y, we have a labeled sample z € (X x Y)™ such that z; = (x;,¢(x;)).

There are three kinds of samples.
(a) Training sample: examples/samples to train a learning algorithm.
(b) Validation sample: samples to tune the free parameters of the learning algorithm.
(c) Test sample: samples to evaluate the performance of the learning algorithm.

2.3 Loss function

Definition 2.9 (Loss function). Loss function measures the difference or loss between predicted and the
true label, and denoted by L : Y x Y — R

Example 2.10 (Hamming loss function). When Y = Y is discrete, the Hamming loss function
L (y,y') £ 1,4,y is bounded.

Example 2.11 (Euclidean loss function). When Y = Y’ C RY, the Euclidean loss function Lg(y,y’) =
ly—y || =y (yi— y})? is unbounded for unbounded label sets.

Definition 2.12 (Generalization error). Given a hypothesis i € H, the target concept ¢ € C, and an under-
lying distribution D from which an example X € X is generated i.i.d., the generalization error or generalization
risk of hypothesis & is defined as

R(h) £ EL(c(X),h(X)).

Example 2.13. For Hamming loss function Ly (y,y') = 1 {y#y'} the generalization risk is given by
R(h) = EL{(x)£n(x)y = P{c(X) #h(X)}.
Example 2.14. For Euclidean loss function Lg(y,y’) = |ly — v H the generalization risk is given by

R(h) =B le(X) —h(X)|I*.

Definition 2.15. If the sample distribution D and concept c are known, then the optimal hypothesis /* that
minimizes the generalization error is given by h* £ argminycy R(h).

Remark 4. The generalization error of a hypothesis is not directly accessible to the learner since both the
distribution D and concept ¢ are unknown. However, one can measure the empirical error of a hypothesis
on the labeled sample z.

Definition 2.16 (Empirical error). For a hypothesis I € H, a target concept ¢ € C, and an labeled sample
z € (X x Y)™ The empirical error is defined as R (h) = LY | L(c(x;),h(x;)).

Definition 2.17 (Supervised learning). The supervised learning is selection of a hypothesis h, € H to mini-
mize the empirical error with respect to loss function L. That is, h, = argmin,c gy R, (h).



2.4 Learning stages

Learning stages for a given sample (collection of labeled examples).

(a) Randomly partition into training, validation, and test sample.

(b) Associate features to examples.

(c) Fix free learning parameters and pick a hypothesis.

(d) Pick the hypothesis with best performance on validation sample.

(e) Predict labels of the test examples.

(f) Evaluated the algorithm using the test labels.

A learning algorithm is called consistent if there are no errors on the training data. A consistent algorithm
may perform very poorly on test data, if the learning class is highly complex. This is the difference between
memorization and generalization.

3 What is machine learning?

Machine learning is computational methods to improve performance or make predictions using experience.
Experience is the past information available to the learner. Information maybe readily available as digitized
human-labeled training sets, or can be obtained via interaction with environment.

Two main practical objectives of machine learning are:

1. accurate predictions of unseen items, and

2. design of efficient, robust, and scalable prediction algorithms.
The quality of machine learning algorithms is measured by

1. time complexity: running time of the algorithm,

2. space complexity: memory requirements of the algorithm, and

3. sample complexity: sample size required for the algorithm to learn a family of concepts
The success of prediction depends on size and quality of data instances. The theoretical learning guarantees
depend on

1. complexity of concept class, and

2. size of training sample.
Fundamental algorithmic and theoretical questions that arise are

1. Which concept families can be learned, and under what conditions?

2. How well can these concepts be learned computationally?
Learning techniques are data-driven methods with relations to computer science, statistics, probability, and
optimization.

4 Learning Problems

Learning problems can be broadly classified into following major classes.

(a) Classification: assign a category to each item. Applications include document classification, text classi-
fication, image classification where number of categories are small. Other applications where there are
large or unbounded categories are optical character recognition and speech recognition.

(b) Regression: assign a real value to each item. Applications include prediction of stock values or other
economic variables, or prediction of physical processes such as temperature, humidity etc.

(c) Ranking: assign order to items. Applications include recommendation systems, web search, and natu-
ral language processing.

(d) Clustering: partition items into homogeneous regions. Clustering is typically used for large unlabeled
data sets. Applications include community detection in large data sets.

(e) Dimensionality reduction: Transform an initial representation of items to a low dimensional represen-
tation preserving some properties of the initial representation. Applications include machine aided
compression, preprocessing of digital images.



5 Learning scenarios

(a) Supervised learning: The learner receives a sample for training and validation, and makes prediction
for all unseen points. This is common scenarios for classification, regression, and ranking.

(b) Unsupervised learning: The learner receives unlabeled examples for training and makes predictions
for all unseen points. Difficult to quantitatively evaluate the performance of a learner. Clustering and
dimensionality reduction are examples of unsupervised learning.

(c) Semi-supervised learning: The learner receives a training sample consisting of both labeled and unla-
beled data, and make predictions for all unseen points.

(d) Transductive inference: The learner receives a labeled training sample along with a set of unlabeled test
points, and make predictions for only these test points.

(e) Online learning: At each round, the learner receives an unlabeled training example, makes a prediction,
receives the true label, and incurs a loss. The objective is to minimize the cumulative loss over all
rounds.

(f) Reinforcement learning: The learner actively interacts with the environment and receives an immediate
reward for each action. The objective is to maximize reward over a course of actions and iterations with
the environment.

(g) Active learning: The learner adaptively/interactively collects training samples by querying an oracle
for new samples. The goal is to achieve comparable performance to the supervised learning with fewer
samples.



