Lecture-02: Review of linear algebra

1 Linear algebra

1.1 Vector Space

Definition 1.1 (Vector addition). A set V is set to be equipped with vector addition mapping + : V' x
V — V defined by + (v, w) = v+ w for any two elements v,w € V, if this mapping satisfies the following
four axioms.

1. Associativity: For all vectors u,v,w € V, we have u + (v 4+ w) = (u 4+ v) + w.

2. Commutativity: For all vectors u,v € V, we have u +v =v 4 u.

3. Additive identity: There exists a zero vector 0 € V,suchthatu + 0 =uforallu € V.

4. Additive inverse: For each vector u € V, there exists an additive inverse —u € V such that u +

(—u)=0.

Definition 1.2 (Scalar multiplication). A set V equipped with vector addition +:V x V — V is also
equipped with field scalar multiplication mapping - : F x V — V defined by -(«,v) = av € V, if this
mapping satisfies the following four axioms.

1. Field compatibility: For all scalars a, € F and vector u € V, we have a(Bu) = (ap)u.

2. Multiplicative identity: There exists a multiplicative identity element 1 € IF, such that 1u = u for

allueV.

3. Distributivity over vector addition: For each scalar & € IF and vectors u,v € V, wehave a(v + u) =
au + av.

4. Distributivity over field addition: For all scalars &, € F and vector u € V, we have (a + f)u =
au + Bu.

Definition 1.3. A vector space over the field IF is a set V equipped with vector addition +:V x V =V
and scalar multiplication - : IF x V — V.

Definition 1.4. A set of vectors W C V is called linearly independent, if for any nonzero vector a« € IF"
with finite ), &y, we have ) ,cwapw #0 € V.

Definition 1.5. The span of a set of vectors W C V is defined by
Span(W) = { Y wmew:ae RrRY, ) finite}.
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Definition 1.6. A basis of any vector space V, is a spanning set of linearly independent vectors, i.e., a
linearly independent subset W C V is basis of vector space V, if Span(W) = V.

Theorem 1.7. All bases of a vector space V have identical cardinality, and defined to be its dimension.

Example 1.8 (Vector space). Following are some common examples of vector spaces.

(a) Euclidean space of d-dimensions, denoted by R,

(b) Space of continuous functions over a compact subset [a,b] denoted by C([a,b]).

(c) Space of random variables defined over probability space (), F, P) with finite pth moment de-
noted by L”.

1.2 Inner Product Space

Definition 1.9. A inner product space is a vector space equipped with an inner product denoted by
(+,+) : V x V — R that satisfies the following axioms.



1. Symmetry: For all vectors u,v € V, we have (u,v) = (v,u).
2. Linearity: For all scalars a, 8 € IF and vectors u,v,w € V, we have (au + po,w) = a (u,w) + B (v, w).
3. Definiteness: For all vectors u € V, we have (u,u) >0, and (u,u) = 0iff u = 0.

Example 1.10 (inner product spaces). Following vector spaces are some common examples of inner

product spaces.

(a) For the vector space V = R? of d-dimensional vectors, the inner product is defined as (u,v) £
uly = Z?Zl U;0;.

(b) For vector space V = C(RR?) of continuous functions, the inner product is defined as (f,g) £

Jra(f,8)(£)dt

(c) For the vector space of random variables, the inner product (-,-) : L? x L9 — R is defined as
(X,Y) £ EXY for conjugate pairs p,q > 1 such that % -+ % =1

1.3 Norms

Definition 1.11. Norm is a mapping ||-|| : V — R that satisfy the following axioms.
1. Definiteness: For all vectors v € V, we have ||v|| = 0iff v = 0.
2. Homogeneity: For all scalars « € R and vectors v € V, we have ||av|| = |a|||7|.

3. Triangle inequality: For all vectors v,w € V, we have ||v + w|| < ||v|| + ||w]|.

Example 1.12 (Norms). Let p > 1, then following are common examples of p- norms

1. For a vector space V = R?, we can define the p-norm as ||qu = (Zizl |ui|p) for all u € R%.

2. For vector space V = C(IRY), the p-norm is defined as I1£1l, = (f]Rd If17 (¢) dt) p for all f €
C(RY).

1
3. For vector space of random variables, the p-norm is defined as || X[|, = (]E |X |p) ? for all
XelLr

Example 1.13 (Special norms). Let p € {1,2,00}, then following are common examples of p-norms.
1. Consider the vector space V = R? and x € V. For p = 1, we have ||x||; = Y%, |x;|. For p =2,
the norm is Euclidean norm such that ||x||§ = (x,x). For p = o0, we have ||x||,, = max; |x;]|.
2. Consider the vector space V = C(IRY) and f € V. For p = 1, we have \|f||1 = [icgra |fI (t)dt
For p = 2, the norm is Euclidean norm such that ||f||2 =) = R |f|* (t)dt. For p = oo,

we have | f]|, = sup; |f] (£)-
3. Consider the vector space V of random variables and X € V. For p =1, we have || X|; = E|X].

For p = 2, the norm is Euclidean norm such that HX||§ = (X,X) = EX?. For p = o, we have
1Xleo = sup,, [X] (w).

Proposition 1.14 (Holder’s Inequality). Let p,q > 1 be a conjugate pair, i.e. - + 1 —1. Then,

[(w,0)| < [l Iyl for all u,0 € R,

Proof. The Holder’s inequality is trivially true if u = 0 or v = 0. Hence, we assume that [[u|[, |||, > 0

and let a = H‘lljli\‘ and b £ Hff)l'\i . We will use the Young’s inequality %a’” + %bq > ab for all a,b > 0, that
P q

implies that
wil” ol |uil |oi|

=
pluly  qlollg = [l

, foralli € [d].
ploll

Since | (u,v)| < Y9, [ui| |v;], we get the result by summing both sides over i € [d] in the above inequality.



Definition 1.15. For points x,y € R?, the distance d(x,y) £ ||x — y||*. Distance of a point x from a set is
defined as d(x, A) £ min{d(x,y):y € A}.

Definition 1.16. For a vector w € R¥ and scalar b € R, we define a hyperplane as a set of points

b
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1.4 Distance from hyperplanes

Lemma 1.17. For a vector w € R? and b € R, we have d(0,E,, ;) = |b|/||w]|.

Proof. For a vector w, we define a unit vector u = w/ ||w|| such that ||u|| = 1 and (w,u) = ||w||. We define
a vector xg = —ub/||w|| such that (w,xp) = —b. It follows that vector x, lies on the hyperplane E,;, is
parallel to the unit vector 1 and at distance d(0,x¢) = ||xo|| = |b|/||w]|| from the origin. Consider a point
x € E; , then from the linearity of inner products and definition of xp, we obtain

(x — xp,u) = (x,u) — (x9,u) =0.
Hence, any point x € E;,;, on the hyperplane can be written as a sum of two orthogonal vectors x =

xo + x — xo. Therefore, d(0,x)* = d(0,x0)? + d(x0,x)* > d(0,x3), and hence d(0,E,, ;) = d(0,xo). O

Remark 1. A hyperplane E,;, = {x ER?: (w,x) +b= O} is defined in terms of the unit vector w/ ||w||
and its distance |b|/||w|| from the origin.

Lemma 1.18. The distance of any point x € RY to a hyperplane E,,;, is given by d(x,E,, ) = Hw"'fl?‘rb' .

Proof. Letu = w/ ||w|| be the unit vector in the direction of w and define xg £ —ub/ ||w||. Any point y on
a hyperplane E;, ;, can be written as sum of two orthogonal vectors y = xo + y — xg. Any point x € R
can be represented as x = (x,u) u + v, such that (v,w) = 0. Therefore,

d(x,Eyp)? = min d(x,y)? = min d(xq +y — xo, (x,u) u +v)? >
’ yeEw,b yeEw,b

O

Remark 2. The distance of a point x € R? from the hyperplane E,, ; is given by d(x, E, ). If (w,x) + b >
0, then the point x lies above the hyperplane E, ;, and if (w,x) + b < 0, then point x lies below the
hyperplane E,, ;..
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