

Lecture-02: Review of linear algebra

1 Linear algebra

1.1 Vector Space

Definition 1.1 (Vector addition). A set V is set to be equipped with vector addition mapping $+: V \times V \rightarrow V$ defined by $+(v, w) = v + w$ for any two elements $v, w \in V$, if this mapping satisfies the following four axioms.

1. **Associativity:** For all vectors $u, v, w \in V$, we have $u + (v + w) = (u + v) + w$.
2. **Commutativity:** For all vectors $u, v \in V$, we have $u + v = v + u$.
3. **Additive identity:** There exists a zero vector $0 \in V$, such that $u + 0 = u$ for all $u \in V$.
4. **Additive inverse:** For each vector $u \in V$, there exists an additive inverse $-u \in V$ such that $u + (-u) = 0$.

Definition 1.2 (Scalar multiplication). A set V equipped with vector addition $+: V \times V \rightarrow V$ is also equipped with field scalar multiplication mapping $\cdot: \mathbb{F} \times V \rightarrow V$ defined by $\cdot(\alpha, v) = \alpha v \in V$, if this mapping satisfies the following four axioms.

1. **Field compatibility:** For all scalars $\alpha, \beta \in \mathbb{F}$ and vector $u \in V$, we have $\alpha(\beta u) = (\alpha\beta)u$.
2. **Multiplicative identity:** There exists a multiplicative identity element $1 \in \mathbb{F}$, such that $1u = u$ for all $u \in V$.
3. **Distributivity over vector addition:** For each scalar $\alpha \in \mathbb{F}$ and vectors $u, v \in V$, we have $\alpha(v + u) = \alpha u + \alpha v$.
4. **Distributivity over field addition:** For all scalars $\alpha, \beta \in \mathbb{F}$ and vector $u \in V$, we have $(\alpha + \beta)u = \alpha u + \beta u$.

Definition 1.3. A vector space over the field \mathbb{F} is a set V equipped with vector addition $+: V \times V \rightarrow V$ and scalar multiplication $\cdot: \mathbb{F} \times V \rightarrow V$.

Definition 1.4. A set of vectors $W \subseteq V$ is called linearly independent, if for any nonzero vector $\alpha \in \mathbb{F}^W$ with finite $\sum_w \alpha_w$, we have $\sum_{w \in W} \alpha_w w \neq 0 \in V$.

Definition 1.5. The span of a set of vectors $W \subseteq V$ is defined by

$$\text{Span}(W) \triangleq \left\{ \sum_{w \in W} \alpha_w w : \alpha \in \mathbb{R}^W, \sum_{w \in W} \alpha_w \text{ finite} \right\}.$$

Definition 1.6. A basis of any vector space V , is a spanning set of linearly independent vectors, i.e., a linearly independent subset $W \subseteq V$ is basis of vector space V , if $\text{Span}(W) = V$.

Theorem 1.7. All bases of a vector space V have identical cardinality, and defined to be its dimension.

Example 1.8 (Vector space). Following are some common examples of vector spaces.

- (a) Euclidean space of d -dimensions, denoted by \mathbb{R}^d .
- (b) Space of continuous functions over a compact subset $[a, b]$ denoted by $C([a, b])$.
- (c) Space of random variables defined over probability space (Ω, \mathcal{F}, P) with finite p th moment denoted by L^p .

1.2 Inner Product Space

Definition 1.9. A *inner product space* is a vector space equipped with an inner product denoted by $\langle \cdot, \cdot \rangle: V \times V \rightarrow \mathbb{R}$ that satisfies the following axioms.

1. **Symmetry:** For all vectors $u, v \in V$, we have $\langle u, v \rangle = \langle v, u \rangle$.
2. **Linearity:** For all scalars $\alpha, \beta \in \mathbb{F}$ and vectors $u, v, w \in V$, we have $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$.
3. **Definiteness:** For all vectors $u \in V$, we have $\langle u, u \rangle \geq 0$, and $\langle u, u \rangle = 0$ iff $u = 0$.

Example 1.10 (inner product spaces). Following vector spaces are some common examples of inner product spaces.

- (a) For the vector space $V = \mathbb{R}^d$ of d -dimensional vectors, the inner product is defined as $\langle u, v \rangle \triangleq u^T v = \sum_{i=1}^d u_i v_i$.
- (b) For vector space $V = C(\mathbb{R}^d)$ of continuous functions, the inner product is defined as $\langle f, g \rangle \triangleq \int_{\mathbb{R}^d} (f, g)(t) dt$.
- (c) For the vector space of random variables, the inner product $\langle \cdot, \cdot \rangle : L^p \times L^q \rightarrow \mathbb{R}$ is defined as $\langle X, Y \rangle \triangleq \mathbb{E} XY$ for conjugate pairs $p, q \geq 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$.

1.3 Norms

Definition 1.11. Norm is a mapping $\|\cdot\| : V \rightarrow \mathbb{R}_+$ that satisfy the following axioms.

1. **Definiteness:** For all vectors $v \in V$, we have $\|v\| = 0$ iff $v = 0$.
2. **Homogeneity:** For all scalars $\alpha \in \mathbb{R}$ and vectors $v \in V$, we have $\|\alpha v\| = |\alpha| \|v\|$.
3. **Triangle inequality:** For all vectors $v, w \in V$, we have $\|v + w\| \leq \|v\| + \|w\|$.

Example 1.12 (Norms). Let $p \geq 1$, then following are common examples of p -norms.

1. For a vector space $V = \mathbb{R}^d$, we can define the p -norm as $\|u\|_p \triangleq \left(\sum_{i=1}^d |u_i|^p \right)^{\frac{1}{p}}$ for all $u \in \mathbb{R}^d$.
2. For vector space $V = C(\mathbb{R}^d)$, the p -norm is defined as $\|f\|_p \triangleq \left(\int_{\mathbb{R}^d} |f|^p(t) dt \right)^{\frac{1}{p}}$ for all $f \in C(\mathbb{R}^d)$.
3. For vector space of random variables, the p -norm is defined as $\|X\|_p \triangleq \left(\mathbb{E} |X|^p \right)^{\frac{1}{p}}$ for all $X \in L^p$.

Example 1.13 (Special norms). Let $p \in \{1, 2, \infty\}$, then following are common examples of p -norms.

1. Consider the vector space $V = \mathbb{R}^d$ and $x \in V$. For $p = 1$, we have $\|x\|_1 = \sum_{i=1}^d |x_i|$. For $p = 2$, the norm is Euclidean norm such that $\|x\|_2^2 = \langle x, x \rangle$. For $p = \infty$, we have $\|x\|_\infty = \max_i |x_i|$.
2. Consider the vector space $V = C(\mathbb{R}^d)$ and $f \in V$. For $p = 1$, we have $\|f\|_1 = \int_{t \in \mathbb{R}^d} |f|(t) dt$. For $p = 2$, the norm is Euclidean norm such that $\|f\|_2^2 = \langle f, f \rangle = \int_{t \in \mathbb{R}^d} |f|^2(t) dt$. For $p = \infty$, we have $\|f\|_\infty = \sup_t |f|(t)$.
3. Consider the vector space V of random variables and $X \in V$. For $p = 1$, we have $\|X\|_1 = \mathbb{E} |X|$. For $p = 2$, the norm is Euclidean norm such that $\|X\|_2^2 = \langle X, X \rangle = \mathbb{E} X^2$. For $p = \infty$, we have $\|X\|_\infty = \sup_\omega |X|(\omega)$.

Proposition 1.14 (Holder's Inequality). Let $p, q \geq 1$ be a conjugate pair, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. Then,

$$|\langle u, v \rangle| \leq \|u\|_p \|v\|_q \text{ for all } u, v \in \mathbb{R}^d.$$

Proof. The Holder's inequality is trivially true if $u = 0$ or $v = 0$. Hence, we assume that $\|u\|_p \|v\|_q > 0$, and let $a \triangleq \frac{|u_i|}{\|u\|_p}$ and $b \triangleq \frac{|v_i|}{\|v\|_q}$. We will use the Young's inequality $\frac{1}{p} a^p + \frac{1}{q} b^q \geq ab$ for all $a, b > 0$, that implies that

$$\frac{|u_i|^p}{p \|u\|_p^p} + \frac{|v_i|^q}{q \|v\|_q^q} \geq \frac{|u_i| |v_i|}{\|u\|_p \|v\|_q}, \text{ for all } i \in [d].$$

Since $|\langle u, v \rangle| \leq \sum_{i=1}^d |u_i| |v_i|$, we get the result by summing both sides over $i \in [d]$ in the above inequality.

Definition 1.15. For points $x, y \in \mathbb{R}^d$, the distance $d(x, y) \triangleq \|x - y\|^2$. Distance of a point x from a set is defined as $d(x, A) \triangleq \min \{d(x, y) : y \in A\}$.

Definition 1.16. For a vector $w \in \mathbb{R}^d$ and scalar $b \in \mathbb{R}$, we define a hyperplane as a set of points

$$E_{w,b} \triangleq \left\{ x \in \mathbb{R}^d : \frac{\langle w, x \rangle}{\|w\|} = -\frac{b}{\|w\|} \right\}.$$

1.4 Distance from hyperplanes

Lemma 1.17. For a vector $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$, we have $d(0, E_{w,b}) = |b|/\|w\|$.

Proof. For a vector w , we define a unit vector $u \triangleq w/\|w\|$ such that $\|u\| = 1$ and $\langle w, u \rangle = \|w\|$. We define a vector $x_0 \triangleq -ub/\|w\|$ such that $\langle w, x_0 \rangle = -b$. It follows that vector x_0 lies on the hyperplane $E_{w,b}$, is parallel to the unit vector u and at distance $d(0, x_0) = \|x_0\| = |b|/\|w\|$ from the origin. Consider a point $x \in E_{w,b}$, then from the linearity of inner products and definition of x_0 , we obtain

$$\langle x - x_0, u \rangle = \langle x, u \rangle - \langle x_0, u \rangle = 0.$$

Hence, any point $x \in E_{w,b}$ on the hyperplane can be written as a sum of two orthogonal vectors $x = x_0 + x - x_0$. Therefore, $d(0, x)^2 = d(0, x_0)^2 + d(x_0, x)^2 \geq d(0, x_0)^2$, and hence $d(0, E_{w,b}) = d(0, x_0)$. \square

Remark 1. A hyperplane $E_{w,b} = \left\{ x \in \mathbb{R}^d : \langle w, x \rangle + b = 0 \right\}$ is defined in terms of the unit vector $w/\|w\|$ and its distance $|b|/\|w\|$ from the origin.

Lemma 1.18. The distance of any point $x \in \mathbb{R}^d$ to a hyperplane $E_{w,b}$ is given by $d(x, E_{w,b}) = \frac{|\langle w, x \rangle + b|}{\|w\|}$.

Proof. Let $u = w/\|w\|$ be the unit vector in the direction of w and define $x_0 \triangleq -ub/\|w\|$. Any point y on a hyperplane $E_{w,b}$, can be written as sum of two orthogonal vectors $y = x_0 + y - x_0$. Any point $x \in \mathbb{R}^d$ can be represented as $x = \langle x, u \rangle u + v$, such that $\langle v, u \rangle = 0$. Therefore,

$$d(x, E_{w,b})^2 = \min_{y \in E_{w,b}} d(x, y)^2 = \min_{y \in E_{w,b}} d(x_0 + y - x_0, \langle x, u \rangle u + v)^2 \geq \left(\frac{\langle x, u \rangle + b}{\|w\|} \right)^2.$$

\square

Remark 2. The distance of a point $x \in \mathbb{R}^d$ from the hyperplane $E_{w,b}$ is given by $d(x, E_{w,b})$. If $\langle w, x \rangle + b > 0$, then the point x lies above the hyperplane $E_{w,b}$, and if $\langle w, x \rangle + b < 0$, then point x lies below the hyperplane $E_{w,b}$.