
Lecture-02: Review of linear algebra

1 Linear algebra

1.1 Vector Space

Definition 1.1 (Vector addition). A set V is set to be equipped with vector addition mapping + : V ×
V → V defined by +(v,w) = v+w for any two elements v,w ∈ V, if this mapping satisfies the following
four axioms.

1. Associativity: For all vectors u,v,w ∈ V, we have u + (v + w) = (u + v) + w.
2. Commutativity: For all vectors u,v ∈ V, we have u + v = v + u.
3. Additive identity: There exists a zero vector 0 ∈ V, such that u + 0 = u for all u ∈ V.
4. Additive inverse: For each vector u ∈ V, there exists an additive inverse −u ∈ V such that u +

(−u) = 0.

Definition 1.2 (Scalar multiplication). A set V equipped with vector addition + : V × V → V is also
equipped with field scalar multiplication mapping · : F × V → V defined by ·(α,v) = αv ∈ V, if this
mapping satisfies the following four axioms.

1. Field compatibility: For all scalars α, β ∈ F and vector u ∈ V, we have α(βu) = (αβ)u.
2. Multiplicative identity: There exists a multiplicative identity element 1 ∈ F, such that 1u = u for

all u ∈ V.
3. Distributivity over vector addition: For each scalar α ∈F and vectors u,v ∈V, we have α(v+ u) =

αu + αv.
4. Distributivity over field addition: For all scalars α, β ∈ F and vector u ∈ V, we have (α + β)u =

αu + βu.

Definition 1.3. A vector space over the field F is a set V equipped with vector addition + : V × V → V
and scalar multiplication · : F × V → V.

Definition 1.4. A set of vectors W ⊆ V is called linearly independent, if for any nonzero vector α ∈ FW

with finite ∑w αw, we have ∑w∈W αww ̸= 0 ∈ V.

Definition 1.5. The span of a set of vectors W ⊆ V is defined by

Span(W)≜

{
∑

w∈W
αww : α ∈ RW , ∑

w∈W
αw finite

}
.

Definition 1.6. A basis of any vector space V, is a spanning set of linearly independent vectors, i.e., a
linearly independent subset W ⊆ V is basis of vector space V, if Span(W) = V.

Theorem 1.7. All bases of a vector space V have identical cardinality, and defined to be its dimension.

Example 1.8 (Vector space). Following are some common examples of vector spaces.
(a) Euclidean space of d-dimensions, denoted by Rd.
(b) Space of continuous functions over a compact subset [a,b] denoted by C([a,b]).
(c) Space of random variables defined over probability space (Ω,F, P) with finite pth moment de-

noted by Lp.

1.2 Inner Product Space

Definition 1.9. A inner product space is a vector space equipped with an inner product denoted by
⟨·, ·⟩ : V × V → R that satisfies the following axioms.
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1. Symmetry: For all vectors u,v ∈ V, we have ⟨u,v⟩ = ⟨v,u⟩.
2. Linearity: For all scalars α, β ∈F and vectors u,v,w ∈ V, we have ⟨αu + βv,w⟩= α ⟨u,w⟩+ β ⟨v,w⟩.
3. Definiteness: For all vectors u ∈ V, we have ⟨u,u⟩⩾ 0, and ⟨u,u⟩ = 0 iff u = 0.

Example 1.10 (inner product spaces). Following vector spaces are some common examples of inner
product spaces.
(a) For the vector space V = Rd of d-dimensional vectors, the inner product is defined as ⟨u,v⟩ ≜

uTv = ∑d
i=1 uivi.

(b) For vector space V = C(Rd) of continuous functions, the inner product is defined as ⟨ f , g⟩ ≜∫
Rd( f , g)(t)dt.

(c) For the vector space of random variables, the inner product ⟨·, ·⟩ : Lp × Lq → R is defined as
⟨X,Y⟩≜ EXY for conjugate pairs p,q ⩾ 1 such that 1

p + 1
q = 1.

1.3 Norms

Definition 1.11. Norm is a mapping ∥·∥ : V → R+ that satisfy the following axioms.

1. Definiteness: For all vectors v ∈ V, we have ∥v∥ = 0 iff v = 0.

2. Homogeneity: For all scalars α ∈ R and vectors v ∈ V, we have ∥αv∥ = |α| ∥v∥.

3. Triangle inequality: For all vectors v,w ∈ V, we have ∥v + w∥⩽ ∥v∥+ ∥w∥.

Example 1.12 (Norms). Let p ⩾ 1, then following are common examples of p-norms.

1. For a vector space V = Rd, we can define the p-norm as ∥u∥p ≜
(

∑d
i=1 |ui|p

) 1
p

for all u ∈ Rd.

2. For vector space V = C(Rd), the p-norm is defined as ∥ f ∥p ≜
(∫

Rd | f |p (t)dt
) 1

p
for all f ∈

C(Rd).

3. For vector space of random variables, the p-norm is defined as ∥X∥p ≜
(

E |X|p
) 1

p
for all

X ∈ Lp.

Example 1.13 (Special norms). Let p ∈ {1,2,∞}, then following are common examples of p-norms.
1. Consider the vector space V = Rd and x ∈ V. For p = 1, we have ∥x∥1 = ∑d

i=1 |xi|. For p = 2,
the norm is Euclidean norm such that ∥x∥2

2 = ⟨x, x⟩. For p = ∞, we have ∥x∥∞ = maxi |xi|.
2. Consider the vector space V = C(Rd) and f ∈ V. For p = 1, we have ∥ f ∥1 =

∫
t∈Rd | f | (t)dt.

For p = 2, the norm is Euclidean norm such that ∥ f ∥2
2 = ⟨ f , f ⟩ =

∫
t∈Rd | f |2 (t)dt. For p = ∞,

we have ∥ f ∥∞ = supt | f | (t).
3. Consider the vector space V of random variables and X ∈ V. For p = 1, we have ∥X∥1 = E |X|.

For p = 2, the norm is Euclidean norm such that ∥X∥2
2 = ⟨X, X⟩ = EX2. For p = ∞, we have

∥X∥∞ = supω |X| (ω).

Proposition 1.14 (Holder’s Inequality). Let p,q ⩾ 1 be a conjugate pair, i.e. 1
p + 1

q = 1. Then,

|⟨u,v⟩|⩽ ∥u∥p ∥y∥q for all u,v ∈ Rd.

Proof. The Holder’s inequality is trivially true if u = 0 or v = 0. Hence, we assume that ∥u∥p ∥v∥q > 0,

and let a ≜ |ui |
∥u∥p

and b ≜ |v|i
∥v∥q

. We will use the Young’s inequality 1
p ap + 1

q bq ⩾ ab for all a,b > 0, that

implies that
|ui|p

p∥u∥p
p
+

|vi|q

q∥v∥q
q
⩾

|ui| |vi|
∥u∥p ∥v∥q

, for all i ∈ [d].

Since |⟨u,v⟩|⩽ ∑d
i=1 |ui| |vi|, we get the result by summing both sides over i ∈ [d] in the above inequality.
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Definition 1.15. For points x,y ∈ Rd, the distance d(x,y)≜ ∥x − y∥2. Distance of a point x from a set is
defined as d(x, A)≜ min{d(x,y) : y ∈ A}.

Definition 1.16. For a vector w ∈ Rd and scalar b ∈ R, we define a hyperplane as a set of points

Ew,b ≜
{

x ∈ Rd :
⟨w, x⟩
∥w∥ = − b

∥w∥

}
.

1.4 Distance from hyperplanes

Lemma 1.17. For a vector w ∈ Rd and b ∈ R, we have d(0, Ew,b) = |b|/∥w∥.

Proof. For a vector w, we define a unit vector u ≜ w/∥w∥ such that ∥u∥= 1 and ⟨w,u⟩= ∥w∥. We define
a vector x0 ≜ −ub/∥w∥ such that ⟨w, x0⟩ = −b. It follows that vector x0 lies on the hyperplane Ew,b, is
parallel to the unit vector u and at distance d(0, x0) = ∥x0∥= |b|/∥w∥ from the origin. Consider a point
x ∈ Ew,b, then from the linearity of inner products and definition of x0, we obtain

⟨x − x0,u⟩ = ⟨x,u⟩ − ⟨x0,u⟩ = 0.

Hence, any point x ∈ Ew,b on the hyperplane can be written as a sum of two orthogonal vectors x =

x0 + x − x0. Therefore, d(0, x)2 = d(0, x0)
2 + d(x0, x)2 ⩾ d(0, x2

0), and hence d(0, Ew,b) = d(0, x0).

Remark 1. A hyperplane Ew,b =
{

x ∈ Rd : ⟨w, x⟩+ b = 0
}

is defined in terms of the unit vector w/∥w∥
and its distance |b|/∥w∥ from the origin.

Lemma 1.18. The distance of any point x ∈ Rd to a hyperplane Ew,b is given by d(x, Ew,b) =
|⟨w,x⟩+b|

∥w∥ .

Proof. Let u = w/∥w∥ be the unit vector in the direction of w and define x0 ≜−ub/∥w∥. Any point y on
a hyperplane Ew,b, can be written as sum of two orthogonal vectors y = x0 + y − x0. Any point x ∈ Rd

can be represented as x = ⟨x,u⟩u + v, such that ⟨v,w⟩ = 0. Therefore,

d(x, Ew,b)
2 = min

y∈Ew,b
d(x,y)2 = min

y∈Ew,b
d(x0 + y − x0, ⟨x,u⟩u + v)2 ⩾

( ⟨x,w⟩+ b
∥w∥

)2
.

Remark 2. The distance of a point x ∈ Rd from the hyperplane Ew,b is given by d(x, Ew,b). If ⟨w, x⟩+ b >
0, then the point x lies above the hyperplane Ew,b, and if ⟨w, x⟩ + b < 0, then point x lies below the
hyperplane Ew,b.
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