
Lecture-03: Review of convexity

1 Convexity

Let X⊆ Rd for d ⩾ 1 and f : X→ R be a smooth function.

Definition 1.1 (Gradient). The gradient of function f at point x ∈ X is defined as the column vector
∇ f (x) ∈ Rd, where the entry i ∈ [d] is defined as (∇ f (x))i ≜

∂ f
∂xi

(x).

Definition 1.2 (Hessian). The Hessian of function f at point x ∈ X is denoted by the matrix ∇2 f (x) ∈
RN×N , where the entry (i, j) ∈ [d]× [d] is defined as ∇2 fi,j(x)≜ ∂2 f

∂xi∂xj
(x).

Remark 1. Let f : Rd → R be a smooth function over d-dimensional reals. Then, we can write its Taylor
series expansion around the neighborhood of x ∈ Rd, in terms of the gradient vector ∇ f (x) ∈ Rd and
the Hessian matrix ∇2 f (x) ∈ RN×N , as

f (y) = f (x) + ⟨∇ f (x), (y − x)⟩+ 1
2

〈
(y − x),∇2 f (x)(y − x)

〉
+ o(∥y − x∥2

2). (1)

Definition 1.3 (Stationary Point). A point x ∈ X is called a stationary point of f : X→ R, if f attains a
local extremum at x.

Remark 2. If f : X→ R is smooth, then ∇ f (x) = 0 at a stationary point x ∈ X.

1.1 Convexity

Definition 1.4 (Convex Set). A set X is called convex if for all x,y ∈ X and α ∈ [0,1], the convex combi-
nation αx + ᾱy ∈ X where ᾱ ≜ (1 − α).

Definition 1.5 (Convex Hull). A convex hull of a set A is the smallest convex set including A, i.e.
conv(A)≜ {∑x∈A αxx : 0 ⩽ αx ⩽ 1,∑x∈A αx = 1} .

Definition 1.6. Let X⊆ Rd. For a function f : X→ R, we define its epigraph as

Epi( f )≜ {(x,y) ∈ X× R : y ⩾ f (x)} .

Definition 1.7. A function f : X → R is convex if the associated domain X and epigraph Epi( f ) are
convex sets.

Theorem 1.8. Let X⊂ Rd be a convex set. Then the following are equivalent statements.
(a) f : X→ R is a convex function.
(b) For all α ∈ [0,1] and x1, x2 ∈ X, we have f (αx1 + (1 − α)x2)⩽ α f (x1) + (1 − α) f (x2).
(c) For differentiable f , we have f (x2)− f (x1)⩾ ⟨∇ f (x1), x2 − x1⟩ for all x1, x2 ∈ X.
(d) For twice differentiable f , we have ∇2 f ⪰ 0, i.e. ∇2 f is a positive semi-definite matrix.

Proof. For convex set X⊆ Rd and a function f : X→ R, we will show that statement a implies part (b),
which implies part (c), which implies part (d), which implies part (a).
a =⇒ b: Let (x1, f (x2)), (x2, f (x2)) ∈ Epi( f ) for x1, x2 ∈ X. Let α ∈ [0,1] and x1, x2 ∈ X, then from the

convexity of X, we have αx1 + ᾱx2 ∈ X. Further from the convexity of Epi( f ), we have (αx1 +
ᾱx2,α f (x1) + ᾱ f (x2)) ∈ Epi( f ). That is, α f (x1) + ᾱ f (x2)⩾ f (αx1 + ᾱx2).

b =⇒ c: Recall that αx1 + ᾱx2 = x1 + ᾱ(x2 − x1). From part (a), we have f (x2)− f (x1)⩾
f (αx1+ᾱx2)− f (x1)

ᾱ .
Taking ᾱ → 0, we observe that the right hand side is equal to ⟨∇ f (x1), x2 − x1⟩.

c =⇒ d: Let x1, x2 ∈X. From (1) and part (b), it follows that f (x2)− f (x1)−⟨∇ f (x1), x2 − x1⟩= 1
2 (x2 −

x1)
T∇2 f (x1)(x2 − x1) + o(∥x2 − x1∥2

2)⩾ 0.
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d =⇒ a: Let α ∈ [0,1] and x1, x2 ∈ X. Then, it suffices to show that α f (x1) + ᾱ f (x2) ⩾ f (αx1 + ᾱx2).
From the Taylor expansion of f in the neighborhood of x2, we get

α( f (x1)− f (x2)) = α ⟨∇ f (x2), x1 − x2⟩+
α

2

〈
(x1 − x2),∇2 f (x2)(x1 − x2)

〉
+ o(∥x1 − x2∥2

2).

Similarly, we write the Taylor expansion of f in the neighborhood of x2, to get

f (αx1 + ᾱx2)− f (x2) = α ⟨∇ f (x2), x1 − x2⟩+
α2

2

〈
(x1 − x2),∇2 f (x2)(x1 − x2)

〉
+ o(∥x1 − x2∥2

2).

Taking the difference, we get α( f (x1)− f (x2))⩾ f (αx1 + ᾱx2)− f (x2).

Example 1.9 (Convex Function). Following functions f : Rd → R are convex.
(a) Linear Function: f (x) = ⟨w, x⟩ for each w ∈ Rd.
(b) Quadratic Function: f (x) = xT Ax for a positive semi definite matrix A ∈ RN×N .
(c) Abs Maximum: f (x) = max{|xi| : i ∈ [N]} = ∥x∥∞.

Definition 1.10. We define a composition function f ≜ (h ◦ g) : X → Z for functions h : Y → Z and
g : X→ Y by defining f (x)≜ h(g(x)) for all x ∈ X.

Lemma 1.11 (Composition of functions). Let h : R → R and g : Rd → R. Then, the following statements
are true for the composition function f ≜ h ◦ g.
(a) If h is convex and nondecreasing and g is convex, then f is convex.
(b) If h is convex and nonincreasing and g is concave, then f is convex.
(c) If h is concave and nondecreasing and g is concave, then f is concave.
(d) If h is concave and nonincreasing and g is convex, then f is concave.

Proof. We will use the property that a function f is convex iff (i) dom( f ) is convex and (ii) f (αx1 + ᾱx2)⩽
α f (x1) + ᾱ f (x2) for all α ∈ [0,1] and x1, x2 ∈ dom( f ).

Recall that Rd is convex for all d ⩾ 1. We will only show the first statement, and rest follow similar
steps. Let x1, x2 ∈ Rd and α ∈ [0,1]. From the convexity of g, we get g(αx1 + ᾱx2) ⩽ αg(x1) + ᾱg(x2).
From the nondecreasing property of h, we get h(g(αx1 + ᾱx2))⩽ h(αg(x1) + ᾱg(x2)). From the convex-
ity of h, we get h(αg(x1) + ᾱg(x2))⩽ αh(g(x1)) + ᾱh(g(x2)).

Theorem 1.12 (Jensen’s Inequality). Let X : Ω →X⊆ Rd be a random vector with finite marginal means, and
f : X→ R be a convex function. Then the mean E[X] ∈ X, the mean E[ f (X)] is fnite, and f (E[X])⩽ E[ f (X)].

Proof. We will show this for simple random vector X : Ω → {x1, . . . , xm} ⊆ X, such that αi ≜ P{X = xi}
for all i ∈ [m]. Then, the mean EX = ∑m

i=1 αixi ∈ X from the convexity of X, and E f (X) = ∑m
i=1 αi f (xi) is

finite. Further, from the convexity of f , we get f
(

∑m
i=1 αixi

)
⩽ ∑m

i=1 αi f (xi).

Corollary 1.13 (Young’s inequality). Let p,q⩾ 1 be such that 1
p +

1
q = 1. Then, ab⩽ ap

p + bq

q for all a,b ∈R+.

Proof. Consider a positive random variable X : Ω →{ap,bq} with probability mass function PX(ap) = 1
p

and PX(bq) = 1
q . Applying Jensen’s inequality to the concave log function, we obtain

ln
(

1
p

ap +
1
q

bq
)
= lnEX ⩾ E ln X =

1
p

ln ap +
1
q

lnbq = ln ab.

Since ln(·) is an increasing function, the above inequality implies the result.
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