Lecture-03: Review of convexity

1 Convexity

Let X CR? ford > 1 and f:X — R be a smooth function.

Definition 1.1 (Gradient). The gradient of function f at point x € X is defined as the column vector

. . . o)
Vf(x) € RY where the entry i € [d] is defined as (V f(x)); £ a—f (x).

Xi
Definition 1.2 (Hessian). The Hessian of function f at point x € X is denoted by the matrix V2f(x) €
2
RN*N, where the entry (i,j) € [d] x [d] is defined as V2f; ;(x) £ %&{xj(x).

Remark 1. Let f : R? — R be a smooth function over d-dimensional reals. Then, we can write its Taylor
series expansion around the neighborhood of x € R, in terms of the gradient vector V f(x) € R? and
the Hessian matrix V2f(x) € RN*N, as

Fy) = £+ V() (y — 00} + 5 (v = 20), V2R —x)) + oy — 2]2): 1)

Definition 1.3 (Stationary Point). A point x € X is called a stationary point of f : X — R, if f attains a
local extremum at x.

Remark 2. If f : X — R is smooth, then V f(x) = 0 at a stationary point x € X.

1.1 Convexity

Definition 1.4 (Convex Set). A set X is called convex if for all x,y € X and « € [0,1], the convex combi-
nation ax + &y € X where & = (1 — a).

Definition 1.5 (Convex Hull). A convex hull of a set A is the smallest convex set including 4, i.e.
conv(A) 2 {Yreatrx:0<ay <1, cqtr =1}

Definition 1.6. Let X C R?. For a function f : X — R, we define its epigraph as

Epi(f) £ {(x,y) X xRy > f(x)}.

Definition 1.7. A function f : X — R is convex if the associated domain X and epigraph Epi(f) are
convex sets.

Theorem 1.8. Let X C IRY be a convex set. Then the following are equivalent statements.

(a) f:X — Risa convex function.

(b) Forall a € [0,1] and x1,x, € X, we have f (axq + (1 —a)xp) <af(x1) + (1 —a)f(x2).
(c) For differentiable f, we have f(x2) — f(x1) = (Vf(x1),x2 — x1) for all x1,x, € X.

(d) For twice differentiable f, we have V2 f = 0, i.e. V*f is a positive semi-definite matrix.

Proof. For convex set X C R? and a function f : X — R, we will show that statement@implies part (b),

which implies part (), which implies part (d), which implies part (a)).

bl = Bt Let (x1,f(x2)),(x2, f(x2)) € Epi(f) for x1,x, € X. Let « € [0,1] and x1,x, € X, then from the
convexity of X, we have ax; + ax, € X. Further from the convexity of Epi(f), we have (ax; +
axpy,af(x1) +af(xz)) € Epi(f). Thatis, af (xq) + &f(x2) > f(axy + @xy).

bl = [d Recall that ax; 4+ &xy = x1 + &(x2 — x7). From part (a), we have f(xp) — f(x1) > w
Taking @ — 0, we observe that the right hand side is equal to (V f(x1),x2 — x1).

[d = [d@ Letxq,x; € X. From (I) and part (B)), it follows that f(x2) — f(x1) — (Vf(x1),%2 — x1) = 3 (x2 —
#) V3 (x1) (32 = x1) + (|2 = 3 3) > 0.



d — [a Leta € [0,1] and x1,x; € X. Then, it suffices to show that af(x1) + &f(x2) > f(ax; + &xp).
From the Taylor expansion of f in the neighborhood of x,, we get

a(f(x1) = f(x2)) = & (Vf(x2), %1 = x2) + 5 ((x1 = 22), V2f(32) (31 = x2) ) + 0|1 — x2][3).

Similarly, we write the Taylor expansion of f in the neighborhood of x», to get

2
flax +xz) = f(x2) = (Vf(x2), 31 = x2) + 5 ( (11 = x2), V2 () (51 = 32) ) + 0|11 = x2 ).
Taking the difference, we get a(f(x1) — f(x2)) = f(ax; + &x2) — f(x2).
0

Example 1.9 (Convex Function). Following functions f : R? — R are convex.

(a) Linear Function: f(x) = (w,x) for each w € R¥.

(b) Quadratic Function: f(x) = xT Ax for a positive semi definite matrix A € RV*N,
(c) Abs Maximum: f(x) = max{|x;| :7 € [N]} = ||x|| -

Definition 1.10. We define a composition function f = (ho g) : X — Z for functions h : Y — 2 and
¢:X — Y by defining f(x) £ h(g(x)) for all x € X.

Lemma 1.11 (Composition of functions). Let /1 : R — R and g : RY — R. Then, the following statements
are true for the composition function f £ ho g.

(a) If h is convex and nondecreasing and g is convex, then f is convex.

(b) If h is convex and nonincreasing and g is concave, then f is convex.

(c) If h is concave and nondecreasing and g is concave, then f is concave.

(d) If his concave and nonincreasing and g is convex, then f is concave.

Proof. We will use the property that a function f is convex iff (i) dom( f) is convex and (ii) f (ax; + &x7) <
af(x1) +af(xp) forall a € [0,1] and x7,x; € dom(f).

Recall that R? is convex for all d > 1. We will only show the first statement, and rest follow similar
steps. Let x1,x, € R? and a € [0,1]. From the convexity of g, we get g(ax; + &x2) < ag(x1) + &g(x2).
From the nondecreasing property of h, we get h(g(ax; + &xp)) < h(ag(x1) + ag(x2)). From the convex-
ity of h, we get h(ag(x1) + ag(x2)) < ah(g(xq)) + ah(g(x2)). O

Theorem 1.12 (Jensen’s Inequality). Let X : Q — X C R? be a random vector with finite marginal means, and
f:X — R be a convex function. Then the mean E[X] € X, the mean E[f (X)] is fnite, and f(E[X]) <E[f(X)].

Proof. We will show this for simple random vector X : QO — {x1,...,x,} C X, such that a; = P {X = x;}
foralli € [m]. Then, the mean EX =)/ ; w;x; € X from the convexity of X, and Ef (X) = Y/" ; a; f (x;) is

finite. Further, from the convexity of f, we get f (2;*‘:1 o(l-xl-) <Ly aif (x;). O
Corollary 1.13 (Young's inequality). Let p,q > 1 be such that % + % =1. Then, ab < % + %for alla,beRy.

Proof. Consider a positive random variable X : (O — {a”, b7} with probability mass function Px (a?) = %

and Px(b7) = 1. Applying Jensen’s inequality to the concave log function, we obtain
7- APplymg q y g

In (1a” + 1b‘7> =INnEX>EInX = llna’” + 1lnb‘7 = Inab.
p q p q

Since In(+) is an increasing function, the above inequality implies the result. O
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