
Lecture-04: Review of constrained optimization

1 Constrained Optimization

Problem 1 (Primal problem). Consider a cost function f : Rd → R and a constraint function g : Rd →
Rm. The primal problem is p∗ ≜ inf{ f (x) : x ∈ X} , where the constraint set is

X≜
m⋂

i=1

{
x ∈ Rd : gi(x)⩽ 0

}
. (1)

Definition 1.1 (Lagrangian). For the Problem 1, we define an associated Lagrangian function L : Rd ×
Rm

+ → R for Lagrange or dual variables α ∈ Rm
+ and primal variables x ∈ Rd, as

L(x,α)≜ f (x) + ⟨α, g(x)⟩ . (2)

Definition 1.2 (Dual function). The dual function F : Rm
+ → R associated with the Problem 1 is defined

for dual variables α ∈ Rm
+ as

F(α)≜ inf
{
L(x,α) : x ∈ Rd

}
. (3)

Definition 1.3. A function h : X→ R is said to be affine if it can be defined as x 7→ h(x)≜ ⟨w, x⟩+ b for
all x ∈ X⊆ Rd and some w ∈ Rd and b ∈ R.

Theorem 1.4. The following are true for the dual function F : Rm
+ → R defined in (3) for the Problem 1.

(a) F is concave in α ∈ Rm
+.

(b) F(α)⩽ L(x,α) for all α ∈ Rm
+ and x ∈ Rd.

(c) F(α)⩽ p∗ for all α ∈ Rm
+.

Proof. Recall that L(α) = f (x) + ⟨α, g(x)⟩ is an affine function of α ∈ Rm
+, and F(α) = infx L(x,α).

(a) Let β ∈ [0,1], α1,α2 ∈ Rm
+, and x ∈ X. Since Lagrangian L is affine in α, we obtain that

F(βα1 + β̄α2) = inf
x

[
βL(x,α1) + β̄L(x,α2)

]
⩾ β inf

x
L(x,α1) + β̄ inf

x
L(x,α2) = βF(α1) + β̄F(α2).

(b) From the definition of F, it follows that F(α)⩽ L(x,α) for all x ∈ Rd.
(c) Recall that gi(x) ⩽ 0 for all x ∈ X and i ∈ [m], and hence ⟨α, g(x)⟩ ⩽ 0 for all x ∈ X and α ∈ Rm

+.
Therefore, L(x,α)⩽ f (x) for all x ∈ X, and hence F(α)⩽ infx∈XL(x,α)⩽ p∗ and the result follows.

Problem 2 (Dual problem). The dual problem associated with primal problem defined in Problem 1 is

d∗ ≜ max{F(α) : α ∈ Rm
+} .

Remark 1. From the properties of dual function F : Rm
+ → R in Theorem 1.4, we obtain that F is concave

in α ∈ Rm
+. Since Rm

+ is a convex set, it follows that the dual problem is convex. We further observe
that the optimal value of dual problem d∗ ⩽ p∗. The difference of optimal values (p∗ − d∗) is called the
duality gap. For a primal problem, the strong duality holds if the duality gap is zero, or d∗ = p∗.

1.1 Saddle point and necessary conditions

Definition 1.5 (Saddle point). For a Lagrangian L : Rd × Rm
+ → R, a saddle point (x0,α0) sastifies

sup
α∈Rm

+

L(x0,α)⩽ L(x0,α0)⩽ inf
x∈Rd

L(x,α0). (4)
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Theorem 1.6 (Sufficient condition). For the primal problem defined in Problem 1, if (x0,α0) is a saddle point
of the associated Lagrangian L, then the following statements are true.
(a) F(α0) = L(x0,α0).
(b) x0 ∈ X.
(c)

〈
α0, g(x0)

〉
= 0.

(d) p∗ = f (x0) = F(α0).

Proof. Let (x0,α0) be the saddle point of the Lagrangian L associated with the Problem 1.
(a) Recall that F(α) = infx∈Rd L(x,α) for all α ∈ Rm

+ from the definition of dual function. Hence from
the second saddle point condition in (4), we get that L(x0,α0)⩽ F(α0). Applying Theorem 1.4(b) at
α = α0, we have F(α0)⩽ L(x0,α0). It follows that F(α0) = L(x0,α0).

(b) We assume that x0 /∈ X, then there exists an i ∈ [m] such that gi(x0) > 0. We take α ∈ Rm
+ such that

αi > α0
i and αj = α0

j for all j ̸= i. Then, we observe that

L(x0,α)−L(x0,α0) =
〈

α − α0, g(x0)
〉
= (αi − α0

i )gi(x0) + ∑
j ̸=i

(αj − α0
j )gj(x0)⩾ 0.

This contradicts the first saddle point condition in (4), and hence x0 ∈ X.
(c) Since x0 ∈ X, we have

〈
α, g(x0)

〉
⩽ 0 for all α ∈ Rm

+. It follows that L(x0,α) ⩽ f (x0) for all α ∈ Rm
+

with the upper bound achieved for α such that
〈
α, g(x0)

〉
= 0, i.e. sup

{
L(x0,α) : α ∈ Rm

+

}
= f (x0).

This condition together with the first saddle point condition in (4) implies that

L(x0,α0)⩽ sup
α∈Rm

+

L(x0,α)⩽ L(x0,α0).

The implies that α0 is the supremum achieving dual variable for x0 ∈ X and
〈
α0, g(x0)

〉
= 0.

(d) Recall that p∗ = infx∈X f (x). Since x0 ∈ X, we have p∗ ⩽ f (x0). From the previous part, we have
L(x0,α0) = f (x0). From the the second saddle point condition in (4) and the definition of dual
function F, we have L(x0,α0)⩽ F(α0). Further, we have F(α0)⩽ p∗ from Theorem 1.4(c). Combining
these results, we get

p∗ ⩽ f (x0) = L(x0,α0)⩽ F(α0)⩽ p∗.

This implies that there is no duality gap and the saddle point (x0,α0) solves the primal and the dual
problems.

Corollary 1.7. Consider the primal problem in Problem 1 with the cost function f and constraint functions
(gi : i ∈ [m]) being differentiable. Let (x0,α0) be a saddle point of the associated Lagrangian, then ∇xL(x∗,α∗) =
∇x f (x0) +

〈
α0,∇xg(x0)

〉
= 0.

1.2 Convexity, constraint qualification, and sufficient conditions

Definition 1.8. Consider a set A. The interior of a set A is defined as Ao ≜ ∪{U : U ⊆ A,U open}. The
closure of a set A is defined as Ā ≜ ∩{C : A ⊆ C,C closed}.

Definition 1.9 (Strong constraint qualification). The strong constraint qualification or Slater’s condi-
tion is defined as the existence of a point x ∈ Xo such that gi(x) < 0 for all i ∈ [m].

Theorem 1.10 (Strong necessary condition). Let the cost function f and constraints gi for i ∈ [m] be convex
functions, such that the Slater’s condition holds, and x∗ be the solution of the Problem 1 . Then, there exists
α∗ ∈ Rm

+ such that (x∗,α∗) is a saddle point of the associated Lagrangian L.

Definition 1.11 (Weak constraint qualification). The weak constraint qualification or weak Slater’s
condition is defined as the existence of a point x ∈ Xo such that for each i ∈ [m] either gi(x) < 0 or
gi(x) = 0 and gi affine.

Theorem 1.12 (Weak necessary condition). Let the cost function f and constraints gi for i ∈ [m] be convex
differentiable functions, such that the weak Slater’s condition holds, and x∗ be the solution of the Problem 1 .
Then, there exists α∗ ∈ Rm

+ such that (x∗,α∗) is a saddle point of the associated Lagrangian L.

Remark 2. The strong duality holds when the primal problem is convex with qualifying constraints.
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Theorem 1.13 (Karush-Kuhn-Tucker (KKT)). Let the cost function f and constraint functions gi for all
i ∈ [m] be convex and differentiable functions, such that the constraints are qualified. Then x∗ ∈ Rd is a solution
of the constrained problem iff there exists α∗ ∈ Rm

+ such that

∇x f (x∗) +
m

∑
i=1

α∗i ∇xgi(x∗) = 0, gi(x∗)⩽ 0, i ∈ [m],
m

∑
i=1

α∗i gi(x∗) = 0. (5)

Proof. We will show this in two steps. We will first assume that x∗ ∈ X is solution of the constrained
problem and show that the there exists α∗ ∈ Rm

+ such that the three KKT conditions are met. Conversely,
we will assume that the pair (x∗,α∗) ∈ Rd × Rm

+ satisfies three KKT conditions, and show that f (x) ⩾
f (x∗) for all x ∈ X.
=⇒ From the necessary condition theorem, it follows that if x∗ ∈X is a solution to the primal problem,

then there exists dual variables α∗ ∈Rm
+ such that (x∗,α∗) is a saddle point of the Lagrangian. Then

it follows from Corollary 1.7, the first KKT condition holds. From Theorem 1.6, we have x∗ ∈ X,
and hence constraint gi(x∗) ⩽ 0 is satisfied for all i ∈ [m] and the second KKT condition holds.
From Theorem 1.6, we have ⟨α∗, g(x∗)⟩ = 0 and the third KKT condition holds.

⇐= We first observe from the convexity of f , that for any x ∈ RN, we have

f (x)− f (x∗)⩾ ⟨∇x f (x∗), x − x∗⟩ . (6)

From the first KKT condition, we get ⟨∇x f (x∗), x − x∗⟩ = −∑m
i=1 α∗i ⟨∇xgi(x∗), x − x∗⟩. From the

convexity of gi for all i ∈ [m] and the third KKT condition, we have

−
m

∑
i=1

α∗i ⟨∇xgi(x∗), x − x∗⟩⩾−
m

∑
i=1

α∗i (gi(x)− gi(x∗)) = −
m

∑
i=1

α∗i gi(x). (7)

Recall that any point x ∈ X satisfies the constraint gi(x)⩽ 0 for each i ∈ [m]. Thus, combining the
inequalities in (6) and (7), we get f (x)− f (x∗)⩾ 0 for all x ∈ X.
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