Lecture-04: Review of constrained optimization

1 Constrained Optimization

Problem 1 (Primal problem). Consider a cost function f : R? — R and a constraint function g : RY —
R™. The primal problem is p* £ inf{f(x) : x € X}, where the constraint set is

ém d. .
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Definition 1.1 (Lagrangian). For the Problem we define an associated Lagrangian function £ : RY x
R” — R for Lagrange or dual variables « € R and primal variables x € RY, as

L(x,) = fx) + (a,8(x)) - @

Definition 1.2 (Dual function). The dual function F : R"! — R associated with the Problemis defined
for dual variables « € R'! as

F(a) éinf{i)(x,zx) x eIRd}. 3)

Definition 1.3. A function & : X — R is said to be affine if it can be defined as x + i(x) = (w,x) + b for
all x € X CR? and some w € R? and b € R.

Theorem 1.4. The following are true for the dual function F : R} — R defined in @) for the Problem![l}
(a) Fis concave in & € R’}

(b) F(a) < L(x,a) forall a € R" and x € RY.
(c) F(a) < p* forall « € R,

Proof. Recall that £(a) = f(x) + (,g(x)) is an affine function of € R, and F(«) = inf, £(x,a).
(a) Let € [0,1], a1,ap € R", and x € X. Since Lagrangian £ is affine in «, we obtain that

F(Bay + Bao) = irj}f [ﬁL(x,al) + BL(x,zxz)} > ﬁir)}fL(x,al) + Bir}fL(x,txz) = BF(ay) + BF(a2).

(b) From the definition of F, it follows that F(a) < £(x,«) for all x € R?.
(c) Recall that g;(x) <0 for all x € X and i € [m], and hence («,g(x)) <0 for all x € X and & € R
Therefore, £(x,a) < f(x) for all x € X, and hence F(«) < infycx £(x,a) < p* and the result follows.
O

Problem 2 (Dual problem). The dual problem associated with primal problem defined in Problem I}is
d* £ max{F(a):a € R7}.

Remark 1. From the properties of dual function F : R”Y — R in Theorem|[T.4} we obtain that F is concave
in « € R, Since R is a convex set, it follows that the dual problem is convex. We further observe
that the optimal value of dual problem d* < p*. The difference of optimal values (p* — d*) is called the
duality gap. For a primal problem, the strong duality holds if the duality gap is zero, or d* = p*.

1.1 Saddle point and necessary conditions

Definition 1.5 (Saddle point). For a Lagrangian £ :R? x R” — R, a saddle point (x,a°) sastifies

sup £(x%,a) < L£(x%,a°%) < inf L(x,a°). 4)
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Theorem 1.6 (Sufficient condition). For the primal problem defined in Problem|1} if (x°,&°) is a saddle point
of the associated Lagrangian £, then the following statements are true.

(@) F(a¥) = £(x0,a0).

(b) x° € X.

(c) {a®g(x0)) =0.

@) p* = f(x%) =F(a?).

Proof. Let (x°,a%) be the saddle point of the Lagrangian £ associated with the Problem

(a) Recall that F(a) = inf s £(x,a) for all « € R from the definition of dual function. Hence from
the second saddle point condition in (@), we get that £(x%,a%) < F(a?). Applying Theorem at
a = a% we have F(a®) < £(x0,40). It follows that F(a?) = £(x0,40).

(b) We assume that x* ¢ X, then there exists an i € [m] such that g;(x") > 0. We take « € R” such that
a; > a? and aj = oc? for all j # i. Then, we observe that

£0%) = £ = {a = ag(6)) = (o~ o) + T~ g () >0
JF
This contradicts the first saddle point condition in (@), and hence x° € X.
(c) Since x € X, we have (&, g(x?)) <0 for all « € R”. It follows that £(x%,a) < f(x°) for all &« € R

with the upper bound achieved for a such that («,g(x%)) =0, i.e. sup {£(x%a) :a € R?} = f(x0).
This condition together with the first saddle point condition in (4) implies that

£(x%,a%) < sup £(x%,a) < £(x0,a0).
a€RY

The implies that & is the supremum achieving dual variable for x? € X and (a%, g(x%)) = 0.

(d) Recall that p* = inf,ex f(x). Since x° € X, we have p* < f(x0). From the previous part, we have
£(x%,a%) = f(x0). From the the second saddle point condition in (&) and the definition of dual
function F, we have £(x?,a%) < F(a?). Further, we have F(a?) < p* from Theorem. Combining
these results, we get

P () = £(%a%) <F(%) <p.
This implies that there is no duality gap and the saddle point (x°,4°) solves the primal and the dual
problems. O

Corollary 1.7. Consider the primal problem in Problem [I| with the cost function f and constraint functions
(i :i € [m)) being differentiable. Let (x°,a°) be a saddle point of the associated Lagrangian, then VL (x*,a*) =
Vaf (x%) + (a®,V,g(x%)) =0.

1.2 Convexity, constraint qualification, and sufficient conditions

Definition 1.8. Consider a set A. The interior of a set A is defined as A° £ U{U : U C A,U open}. The
closure of a set A is defined as A= N{C: A C C,C closed}.

Definition 1.9 (Strong constraint qualification). The strong constraint qualification or Slater’s condi-
tion is defined as the existence of a point x € X? such that g;(x) < 0 for all i € [m].

Theorem 1.10 (Strong necessary condition). Let the cost function f and constraints g; for i € [m] be convex
functions, such that the Slater’s condition holds, and x* be the solution of the Problem . Then, there exists
a* € R such that (x*,a*) is a saddle point of the associated Lagrangian L.

Definition 1.11 (Weak constraint qualification). The weak constraint qualification or weak Slater’s
condition is defined as the existence of a point x € X° such that for each i € [m] either g;(x) < 0 or
gi(x) =0and g; affine.

Theorem 1.12 (Weak necessary condition). Let the cost function f and constraints g; for i € [m] be convex
differentiable functions, such that the weak Slater’s condition holds, and x* be the solution of the Problem [I].
Then, there exists «* € R} such that (x*,a*) is a saddle point of the associated Lagrangian L.

Remark 2. The strong duality holds when the primal problem is convex with qualifying constraints.



Theorem 1.13 (Karush-Kuhn-Tucker (KKT)). Let the cost function f and constraint functions g; for all
i € [m] be convex and differentiable functions, such that the constraints are qualified. Then x* € RY is a solution
of the constrained problem iff there exists a* € R"} such that

Vaf () + ) af Vigi(x") =0, gi(x") <0i € [m], Y afgi(x*) =0. ()
i=1 i=1

Proof. We will show this in two steps. We will first assume that x* € X is solution of the constrained

problem and show that the there exists * € IR"! such that the three KKT conditions are met. Conversely,

we will assume that the pair (x*,a*) € R? x R" satisfies three KKT conditions, and show that f(x) >

f(x*) for all x € X.

= From the necessary condition theorem, it follows that if x* € X is a solution to the primal problem,
then there exists dual variables a* € R” such that (x*,a*) is a saddle point of the Lagrangian. Then
it follows from Corollary the first KKT condition holds. From Theorem we have x* € X,
and hence constraint g;(x*) < 0 is satisfied for all i € [m] and the second KKT condition holds.
From Theorem|[1.6) we have (a*,g(x*)) = 0 and the third KKT condition holds.

<= We first observe from the convexity of f, that for any x € RN, we have

fx) = f(x7) = (Vaf(x7),x — x7). (6)

From the first KKT condition, we get (Vf(x*),x — x*) = =Y af (Vigi(x*),x — x*). From the
convexity of g; for all i € [m] and the third KKT condition, we have

m

=) (Vagi(x™), x —x") > —
i=1 i

NgE

a3 (gi(x) — gi(x*)) = — }mjlafgxx» %

1

Recall that any point x € X satisfies the constraint ¢;(x) < 0 for each i € [m]. Thus, combining the
inequalities in (6) and (7), we get f(x) — f(x*) >0 for all x € X.
O
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