
Lecture-06: SVMs — non-separable case

1 SVMs — non-separable case

Consider the problem of binary classification with label set Y ≜ {−1,1} over N dimensional feature
space X ⊆ RN . Given sample z ∈ (X× Y)m, we define the two disjoint sets of examples corresponding
to two distinct labels as

T−1 ≜ {i ∈ [m] : yi = −1} , T1 ≜ {i ∈ [m] : yi = 1} .

We assume that T−1, T1 are non empty. In most practical binary classification settings, the given sample z
is not linearly separable. That is, it would not be possible to draw a hyperplane Ew,b ≜

{
x ∈ RN : ⟨w, x⟩+ b = 0

}
that perfectly separates T−1 and T1. For any hyperplane Ew,b, we can partition the sample into two dis-
joint sets

S−(w,b)≜ {i ∈ [m] : ⟨w, xi⟩+ b < 0} , S+(w,b)≜ {i ∈ [m] : ⟨w, xi⟩+ b > 0} .

Non-separability of training sample implies that for any hyperplane Ew,b and label y ∈ Y, we have
Ty ∩ S− ̸= ∅ and Ty ∩ S+ ̸= ∅. We normalize (w,b) such that supporting hyperplanes are at distance
± 1

∥w∥2
from the separating canonical hyperplane Ew,b. It follows that the following sets

S−1(w,b)≜ {i ∈ T−1 : ⟨w, xi⟩+ b < −1} , S1(w,b)≜ {i ∈ T1 : ⟨w, xi⟩+ b > 1} ,

are proper subsets of T−1 and T1 respectively. For any i /∈ S−1 ∪ S1, we have yi(⟨w, xi⟩ + b) < 1. To
minimize the number of such examples, we can try to find a hyperplane that minimizes the empirical
error,

min
w,b

|m − |S−1| − |S1|| = minw,b

m

∑
i=1

1{yi(⟨w,xi⟩+b)<1}.

This optimization problem is NP-hard in the dimension of the space and cannot be solved efficiently.
Moreover we would like to work with a smooth function to optimize. The constraints imposed in the
linearly separable case discussed in the linearly separable case cannot all hold simultaneously. How-
ever, a relaxed version of these constraints can indeed hold, where for each example i ∈ [m], there exists
a slack variable ξi ⩾ 0 such that

yi(⟨w, xi⟩+ b)⩾ 1 − ξi.

A slack variable ξi measures the distance by which feature vector xi violates the desired inequality,
yi(⟨w, xi⟩+ b)⩾ 1.

Definition 1.1 (Outliers). For a hyperplane ⟨w, x⟩+ b = 0, a feature vector xi with slack variable ξi > 0
is an outlier. The set of outliers O is defined as

O ≜ [m] \ (S−1 ∪ S1) = {i ∈ [m] : 1 − ξi ⩽ yi(⟨w, xi⟩+ b) < 1} = {i ∈ [m] : ξi > 0} .

Remark 1. Each example xi must be positioned on the correct side of the appropriate marginal hyper-
plane to not be considered an outlier. As a consequence, a feature vector xi with 0 < yi(⟨w, xi⟩+ b) < 1
is correctly classified by the hyperplane ⟨w, x⟩ + b = 0 but is nonetheless considered to be an outlier,
that is, ξi > 0.

Remark 2. If we omit the outliers, the training data is correctly separated by ⟨w, x⟩+ b = 0 with a margin
ρ = 1

∥w∥2
that we refer to as the soft margin, as opposed to the hard margin in the separable case.

Remark 3. How should we select the hyperplane in the non-separable case? One idea consists of select-
ing the hyperplane that minimizes the empirical error. We have already rejected that idea due to the
complexity considerations. We have conflicting objectives here. On the one hand, we need to minimize
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the total slack due to the outliers, measured by ∥ξ∥p
p = ∑m

i=1 ξ
p
i , for some p ⩾ 1. On the other hand, we

wish to maximize the margin for non-outliers. Larger margin can lead to more outliers and hence larger
slack. Hence, these two are conflicting objectives.

Definition 1.2 (Hinge loss). The loss functions ∥ξ∥p
p associated with p = 1 and p = 2 are called the hinge

loss and the quadratic hinge loss, respectively.

Remark 4. Both hinge losses are convex upper bounds on the zero-one loss, thus making them well
suited for optimization. We first observe that for all p ⩾ 1, we have

1{x<0} ⩽ (1 − (x ∧ 1))p.

Recall that a labeled point (xi,yi) is incorrectly labeled if yi(⟨w, xi⟩+ b) < 0. From the definition of the
slack variable ξi, we have 1 − ξi ⩽ yi(⟨w, xi⟩+ b) < 1. Therefore, we observe that

1{yi(⟨w,xi⟩+b)<0} ⩽ (1 − (yi(⟨w, xi⟩+ b) ∧ 1))p ⩽ (1 − (1 − ξi) ∧ 1)p = ξ
p
i .

1.1 Primal optimization problem

We define a primal problem by deciding on a trade-off between these two objectives for the non-
seperable case, where C ⩾ 0 is the trade-off parameter between margin-maximization and the slack
penalty. The parameter C is determined by n-fold cross validation for a given dataset. For ξ ∈ Rm

+, the
primal problem is

min
w,b,ξ

1
2
∥w∥2

2 + C∥ξ∥p
p

subject to yi(⟨w, xi⟩+ b)⩾ 1 − ξi and ξi ⩾ 0, for all i ∈ [m].
(1)

As in the separable case, the objective function is convex and the constraints are affine. Therefore, the
primal problem in (1) is a convex optimization problem. In particular, ξ 7→ ∑m

i=1 ξ
p
i = ∥ξ∥p

p is convex in
view of the convexity of the norm ∥·∥p. There are many possible choices for p leading to more or less
aggressive penalizations of the slack terms. The choices p = 1 and p = 2 lead to the most straightforward
solutions and analyses. In what follows, the analysis is presented in the case of the hinge loss (p = 1),
which is the most widely used loss function for SVMs.

1.2 Support vectors

In this section, we will show that the normal vector w to the resulting hyperplane is a linear combination
of some feature vectors, referred to as support vectors. Consider the dual variable α, β ∈ Rm

+ associated to
the m affine relaxed separation constraints and m non negativity constraint on slack variables. Then, we
can write the Lagrangian for all canonical pairs (w,b) ∈ RN+1 and Lagrange dual variables α, β ∈ Rm

+ as

L(w,b,ξ,α, β) =
1
2
∥w∥2

2 + C∥ξ∥1 −
m

∑
i=1

αi(yi(⟨w, xi⟩+ b)− 1 + ξi)−
m

∑
i=1

βiξi. (2)

Similar to the separable case, the constraints in the primal problem in (1) are affine and thus qualified. In
addition, the objective function as well as the affine constraints are convex and differentiable. It follows
that Ew∗ ,b∗ is the optimal separating cannonical hyperplane if and only if there exists α∗, β∗ ∈ Rm

+ that
satisfies the following three KKT conditions. The first KKT condition is obtained by taking the gradient
of Lagrangian with respect to primal variables and equating it to zero, to get

∇wL|w=w∗ = w∗ −
m

∑
i=1

αiyixi = 0, ∇bL|b=b∗ = −
m

∑
i=1

α∗i yi = 0, ∇ξL|ξ=ξ∗ = C − αi − βi = 0, i ∈ [m].

The next KKT condition is obtained by setting the derivative with respect to dual variables, being less
than or equal to zero. This is equivalent to constraints being satisfied, i.e. for all i ∈ [m]

∇αL= −yi(⟨w∗, xi⟩+ b∗) + 1 − ξ∗i ⩽ 0, ∇βL= −ξ∗i ⩽ 0.

The final KKT conditions looks at the complementary condition, which results in ∑m
i=1 α∗i (yi(⟨w∗, xi⟩+

b∗)− 1 + ξ∗i ) = 0 and ∑m
i=1 β∗

i ξ∗i = 0. Since α, β are nonnegative vectors, it follows from the second KKT
condition that the each term of the two summation is positive. Therefore, it means that for all i ∈ [m]

α∗i [yi(⟨w∗, xi⟩+ b∗)− 1 + ξ∗i ] = 0, β∗
i ξ∗i = 0.

2



Remark 5. The complementary condition implies that α∗i = 0 if yi(⟨w∗, xi⟩+ b∗) ̸= 1 − ξ∗i .

Definition 1.3 (Support vectors). An example of feature vector is a support vector if the corresponding
relaxed constraint Lagrange variable α∗i ̸= 0, i.e.

S ≜ {i ∈ [m] : α∗i ̸= 0} ⊆ {i ∈ [m] : yi(⟨w∗, xi⟩+ b∗) = 1 − ξ∗i } .

Remark 6. Consider the two cases for i ∈ S.
(a) If i ∈ S and ξ∗i = 0, then yi(⟨w∗, xi⟩+ b∗) = 1 and the example xi lies on a marginal hyperplane, as

in the separable case.
(b) If i ∈ S and ξ∗i ̸= 0, then xi is an outlier. In this case, the complementary KKT condition implies that

β∗
i = 0 and hence α∗i = C.

Thus, support vectors xi are either outliers, in which case α∗i = C, or they lie on the marginal hyper-
planes. That is, we can write the support vector as a union of disjoint sets

S = {i ∈ S : ξ∗i = 0} ∪ {i ∈ S : ξ∗i > 0} = {i ∈ S : yi(⟨w∗, xi⟩+ b∗) = 1} ∪ {i ∈ S : α∗i = C} .

Remark 7. As in the separable case, note that while the weight vector w∗ solution is unique, the support
vectors are not.

1.3 Dual optimization problem

In this section, we will show that the hypothesis h ∈ H and distance b can be expressed as inner prod-
ucts. To this end, we look at the the dual form of the constrained primal optimization problem (1).
Recall that the dual function F(α, β) = infw,b,ξ L(w,b,ξ,α, β). The Lagrangian L is minimized at the
optimal primal variables (w∗,b∗,ξ∗) such that

∇wL(w∗,b∗,ξ∗,α, β) =∇bL(w∗,b∗,ξ∗,α, β) =∇ξL(w∗,b∗,ξ∗,α, β) = 0.

Using this condition, we can write the optimal normal vector w∗ = ∑m
i=1 αiyixi in terms of the dual

variables α ∈ Rm
+, together with the constraints ∑m

i=1 αiyi = 0 and C = αi + βi for all i ∈ [m].

Definition 1.4 (Gram matrix). For an unlabeled sample x ∈Xm, we can define a Gram matrix K ∈ Rm×m

defined by the (i, j)th entries Kij ≜
〈

xi, xj
〉

for all i, j ∈ [m].

Remark 8. The matrix K is the Gram matrix associated with vectors (x1, . . . , xm) and hence is positive
semi-definite.

Substituting w∗ = ∑m
i=1 αiyixi, the constraints ∑m

i=1 αiyi = 0 and C = αi + βi for all i ∈ [m], and the
definition of Gram matrix K, in the Lagrangian L(w∗,b∗,ξ∗,α, β), we can write the dual function as
F(α, β) = L(w∗,b∗,ξ∗,α, β) = ∑m

i=1 αi − 1
2 ∑m

i=1 ∑m
j=1 αiyiKijαjyj. The constraints are αi ⩾ 0 together with

βi ⩾ 0 to get αi ⩽ C, and ∑m
i=1 αiyi = 0. Therefore, we can write the dual SVM optimization problem as

max
α

∥α∥1 −
1
2
(α ◦ y)TK(α ◦ y) (3)

subject to: C ⩾ αi ⩾ 0, for all i ∈ [m], and αTy = 0.

We define gram matrix A ∈ Rm×m such that Aij ≜
〈
yixi,yjxj

〉
= yiKijyj for all i, j ∈ [m]. That is, A =

diag(y)K diag(y). The objective function G : α 7→ ∥α∥1 − 1
2 (α ◦ y)TK(α ◦ y) is infinitely differentiable, and

its Hessian is given by ∇2G =−A ⪯ 0, and hence G is a concave function. Since the constraints are affine
and convex, the dual maximization problem (3) is equivalent to a convex optimization problem. Since
G is a quadratic function of Lagrange variables α, this dual optimization problem is also a quadratic
program, as in the case of the primal optimization. Since the constraints are affine, they are qualified
and strong duality holds. Thus, the primal and dual problems are equivalent, i.e., the solution α∗ of the
dual problem (3) can be used directly to determine the hypothesis returned by SVMs. The solution α∗

of the dual problem can be used to return the SVM hypothesis

h(x) = sign(⟨w∗, x⟩+ b∗) = sign

(
m

∑
j=1

α∗j yj
〈

xj, x
〉
+ b∗

)
.

Recall that for all xi ∈ S ∩ {ξi = 0}, we have ⟨w∗, xi⟩+ b∗ = yi. Hence, the constant b∗ is given by

b∗ = yi −
m

∑
j=1

α∗j yj
〈

xj, xi
〉

, for any xi such that 0 < α∗i < C.
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