
Lecture-07: PDS Kernels

1 Kernel Methods

Kernel methods are extensions of SVMs to define non-linear decision boundaries, and can also be used
for other algorithms that depend solely on inner products between sample points. Kernel functions
map the data to higher dimensional space. Under symmetry and positive definiteness of these kernel
functions, we can define inner product in this high dimensional space. A linear separation in this high
dimensional space is non-linear separation in the original space.

Example 1.1 (Document classification). Let X be the set of words in a document, which has a
typical size of |X|= 105 words. Classifying the document into different types based on single words
(elements from the set X) will be difficult because many types of documents will share the same
words. A better way to classify documents is to look for patterns in groups of adjacent words. For
example, consider X3, which is the set of trigrams (triplets of words). Classifying documents in the
space of trigrams will yield better results despite the increased size of the space

∣∣X3
∣∣ = 1015.

Remark 1. The complexity of linear separation algorithm like SVM doesn’t depend on the dimension of
the space, rather on the margin ρ. However, the higher dimension inner product may become costly.

Definition 1.2 (Kernels). For the input space X, we let the non-linear map Φ : X → H be a feature
mapping that takes feature vectors to a higher dimensional space Hilbert H called a feature space. A
function k : X×X→ R is called a kernel over X. For this mapping Φ, we define a kernel K by the inner
product in the space H, such that

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
H

, for all x, x′ ∈ X.

Remark 2. The inner product ⟨·, ·⟩ is similarity measure between two feature vectors in the feature space
H. The kernel k is a similarity measure between elements of the input space X.

Remark 3. Why do we work with kernels?
(a) Efficiency: Inner product in higher dimensional space is equal to the computation of kernel function

in the input space. Computation in the input space X is more efficient than computation in the
feature space H because dim(H) >> dim(X) and ⟨x,y⟩ = O(dim(X)).

(b) Flexibility: There is no need to explicitly define the map Φ but its existence is guaranteed if k satisfies
Mercer’s condition.

Example 1.3 (Polynomial kernel). For c > 0 and degree d ∈ N, we define a kernel

k(x, x′)≜ (
〈

x, x′
〉
+ c)d, for all x, x′ ∈ X⊆ RN .

For N = 2 and d = 2, we see that Φ : X→ H defined for all x ∈ X as

Φ(x)≜
[
x2

1 x2
2

√
2x1x2

√
2cx1

√
2cx2 c

]
suffices to give us k(x, x′) = ⟨Φ(x),Φ(x′)⟩H for all x, x′ ∈ R2. For general N and d, can you find the
dimension of H for the Φ : X→ H corresponding to the Kernel function?
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Example 1.4. Consider the following classification problem shown in Figure 1, where the red and
the blue points must be separated by a hyperplane. This is not possible in the space R2 since no hy-
perplane can separate the blue and red points. However, when we use the function h(x1, x2) = x1x2
to bring these points to a higher-dimensional space, we find that these points are indeed separable
along the x1x2 dimension.

Figure 1: Left: Four points from two classes plotted on the x1, x2 axes. These points are not separable
by any hyperplane. Right: The same four points are plotted on the

√
2x1x2 and

√
2cx1 axes. These

points are now separable.

1.1 Existence of feature map and PDS Kernels

Theorem 1.5 (Mercer’s condition). Let X⊆ RN be a compact set and let k : X×X→ R be a continuous and
symmetric function. Then, the kernel k admits a uniformly convergent expansion of the form

k(x, x′) =
∞

∑
n=0

anϕn(x)ϕn(x′),

with an > 0 iff for any square integrable function c ∈ L2(X), the following condition holds∫∫
X×X

c(x)c(x′)k(x, x′)dxdx′ ⩾ 0.

This is the positive semi-definiteness condition on the kernel k.

Remark 4. This condition is important to guarantee the convexity of the optimization problem for algo-
rithms such as SVMs and thus convergence guarantees.

Remark 5. Mercer’s condition shows that k is a positive semi-definite map iff k(x, x′) = ⟨Φ(x),Φ(x′)⟩H

for all x, x ∈ X, where feature map can be expressed as Φ(x)≜ ∑n∈Z+
en
√

anϕn(x).

Remark 6. A condition that is equivalent to Mercer’s condition under the assumptions of the theorem
is that the kernel k be positive definite symmetric (PDS). This property is in fact more general since in
particular it does not require any assumption about X.

Definition 1.6 (Gram matrix). For a sample x ∈ Xm, the kernel matrix or the Gram matrix associated to
the kernel k and the sample x is denoted by K ∈ Rm×m and given by k(x1, x1) . . . k(x1, xm)

...
. . .

...
k(xm, x1) . . . k(xm, xm)

 .

Definition 1.7 (PDS kernels). A kernel k : X×X→ R is said to be positive definite symmetric (PDS) if for
any x ∈ Xm, the Gram matrix K ∈ Rm×m defined for all i, j ∈ [m] as Ki,j ≜ k(xi, xj), is symmetric positive
semi-definite (SPSD).

Remark 7. The matrix K is SPSD if it is
(i) symmetric, i.e. Kij = Kji,

(ii) positive semi-definite, i.e. for any column vector c ∈ Rm, we have cTKc ⩾ 0.
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Example 1.8 (Inner product). Consider kernel k : X×X→ R defined by the inner product k(x, x′)≜
⟨x, x′⟩ for all x, x′ ∈X. For any unlabeled training sample x ∈Xm, we denote the corresponding gram
matrix by K. We observe that K is symmetric, since the inner product is symmetric. That is,

Kij =
〈

xi, xj
〉
=
〈

xj, xi
〉
= Kji.

Further, we observe that K is positive semi definite, since for any c ∈ Rm, we have

⟨c,Kc⟩ =
m

∑
i,j=1

cj
〈

xi, xj
〉

cj =

〈
m

∑
i=1

cixi,
m

∑
j=1

cjxj

〉
=

∥∥∥∥∥ m

∑
i=1

cixi

∥∥∥∥∥
2

2

⩾ 0.

Since the gram matrix K is SPSD for any sample x, it follows that the kernel k is PDS.

Lemma 1.9 (Cauchy-Schwarz inequality for PDS kernel). Let k be a PDS kernel, then for all x, x′ ∈ X,

k2(x, x′)⩽ k(x, x)k(x′, x′).

Proof. We can write the following Gram matrix for samples x, x′ and PDS kernel k as

K =

[
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

]
.

Since k is a PDS Kernel, the Gram matrix K is symmetric and positive semi-definite. In particular,
k(x, x′) = k(x′, x) and the det(K)⩾ 0. Hence, the result follows.

Definition 1.10 (Normalized kernels). To any kernel k : X×X→ R, we can associate a normalized kernel
k′ : X×X→ R defined for all x, x′ ∈ X by

k′(x, x′) =


k(x,x′)√

k(x,x)k(x′ ,x′)
, k(x, x)k(x′, x′) ̸= 0,

0, k(x, x)k(x′, x′) = 0.

Remark 8. For any x ∈ X such that k(x, x) ̸= 0, we have k′(x, x) = 1. For any PDS kernel, we have
k(x, x′) = ⟨Φ(x),Φ(x′)⟩H. Thus for any x, x′ such that k(x, x)k(x′, x′) ̸= 0,

k′(x, x′) =
⟨Φ(x),Φ(x′)⟩H

∥Φ(x)∥H ∥Φ(x′)∥H

=

〈
Φ(x)

∥Φ(x)∥H

,
Φ(x′)

∥Φ(x′)∥H

〉
H

.

From Cauchy-Schwarz inequality, it follows that |k′|⩽ 1.

Example 1.11 (Gaussian kernel). For σ > 0, let k : X×X→ R be defined as k(x, x′) = exp
(
⟨x,x′⟩

σ2

)
.

The normalized kernel associated with k is a Gaussian kernel k′ : X× X → R with parameter σ > 0
and defined for all x, x′ ∈ X, as

k′(x, x′)≜ exp
(

1
2σ2 (2

〈
x, x′

〉
− ∥x∥2 − ∥y∥2)

)
= exp

(
−∥x − y∥2

2σ2

)
.

Lemma 1.12 (Normalized PDS kernels). Let k be a PDS kernel. Then, the normalized kernel k′ associated to
k is PDS.

Proof. Consider an m-sized unlabeled training sample x ∈ Xm. We will show that the gram matrix K′

generated by the sample x and kernel k′ is SPSD. Symmetry of k′ follows from the symmetry of k, and
hence the gram matrix K′ is symmetric. To see the positive semi-definiteness of the gram matrix K′, we

note that its (i, j)-th entry K′
ij = k′(xi, xj) =

〈
Φ(xi)

∥Φ(xi)∥H
,

Φ(xj)

∥Φ(xj)∥H

〉
H

. Hence, for any vector c ∈ Rm, we

have cTK′c =
∥∥∥∑m

i=1 ci
Φ(xi)

∥Φ(xi)∥H

∥∥∥2

H
⩾ 0.
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2 Closure Properties

Definition 2.1 (Tensor product). The tensor product of two kernels k1,k2 is denoted by k1 ⊗ k2 : X4 → R

and defined for all x1, x′1, x2, x′2 ∈ X, as

(k1 ⊗ k2)(x1, , x′1, x2, x′2, )≜ k1(x1, x′1, )k2(x2, x′2).

Theorem 2.2 (Closure properties of PDS kernels). PDS kernels are closed under sum, product, tensor
product, point-wise limit, and composition with a converging power series ∑∞

n=0 anxn with an ⩾ 0 for all n ∈ N.

Proof. Let (kn ∈ RX×X : n ∈ N) be a sequence of PDS kernels. For each n ∈ N and samples x ∈ Xm, let
Kn be the gram matrix generated by sample x for the kernel kn.

(i) It suffices to show that K1 + K2 is SPSD. Since K1,K2 are SPSD, it follows that K1 + K2 is sym-
metric. From the linearity of inner products and positive semi definiteness of K1,K2, we have
⟨c, (K1 + K2)c⟩ = ⟨c,K1c⟩+ ⟨c,K2c⟩⩾ 0 for any c ∈ Rm.

(ii) It suffices to show that the matrix Kij = [(K1)ij(K2)ij] is SPSD. Symmetry follows from the symme-
try of SPSD matrices K1 and K2.
Since K1 is SPSD, we have K1 = MMT by singular value decomposition or Cholesky decomposi-
tion. Therefore, (K1)ij(K2)ij = ∑m

k=1 Mik Mjk(K2)ij and hence for any c ∈ Rm, we can write

m

∑
i,j=1

cicj(
m

∑
k=1

Mik Mjk)(K2)ij =
m

∑
k=1

m

∑
i,j=1

(ci Mik)(K2)ij(cj Mjk).

Defining zki ≜ ci Mik for all i,k ∈ [m] to define a sequence zk ≜ (ci Mik : i ∈ [m]) for each k ∈ [m], we
see that cTKc = ∑m

k=1 zT
k K2zk ⩾ 0.

(iii) The tensor product of two kernels k1,k2 can be thought of as the product of two PDS kernels

(x1, x′1, x2, x′2) 7→ k1(x1, x′1), (x1, x′1, x2, x′2) 7→ k2(x2, x′2).

(iv) Let k be the point-wise limit of the sequence of PDS kernels (kn : n ∈ N). Let K be the gram matrix
generated by the map k and the sample x ∈ Xm. Symmetry of K follows from the symmetry of
each Kn. From the continuity of inner products, we have ⟨c,Kc⟩= limn ⟨c,Knc⟩⩾ 0 for any c ∈ Rm.

(v) Let’s assume that k is a PDS kernel with |k(x, x′)| < ρ for all x, x′ ∈ X, and let f : x 7→ ∑∞
n=0 anxn,

be a power series with an ⩾ 0 and radius of convergence ρ. Then, for any n ∈ N, both kn and
thus ankn are PDS by closure under product. For any N ∈ N, the sum ∑N

n=0 ankn is PDS by closure
under sum of PDS kernels (ankn : n ⩾ 0) and f ◦ k is PDS by closure under the limit of ∑N

n=0 ankn

as N → ∞.

Example 2.3 (Gaussian kernel). For any PDS kernel k, the kernel exp(k) is also PDS since it can be
written as the following power series with an infinite radius of convergence,

exp(k(x, x′)) = ∑
n∈Z+

1
n!

k(x, x′)n.

Consider the kernel k : X× X → R defined for all x, x′ ∈ X as k(x, x′) ≜ ⟨x, x′⟩. From Example 1.8,
it follows that k is a PDS kernel, and hence k′ = exp(k) is a PDS kernel. Therefore, it follows from
Lemma 1.12 that the Gaussian kernel is PDS since it is a normalized kernel of k′.

Example 2.4 (Sigmoid kernel). For any a,b ⩾ 0, a Sigmoid kernel k : X× X → R is defined for all
x, x′ ∈ X×X as

k(x, x′)≜ tanh(a
〈

x, x′
〉
+ b).

This kernel is used in sigmoid perceptrons in neural networks due to its similarity to the sign func-
tion. It is straightforward to verify that k is a PDS kernel.
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