Lecture-08: Reproducing Kernel Hilbert Space (RKHYS)

1 Reproducing Kernel Hilbert Space (RKHS)

Definition 1.1. For any PDS kernel k : X x X — IR, we can define a kernel evaluation map e, : X — R at

a point x € X by ey (x') £ k(x,x’) for all x' € X.

Definition 1.2. We can define a pre-Hilbert space IHj as the span of kernel evaluations defined in Defi-
nition[1.1} at finitely many elements of X. That is,

Hy = {Zaxex: finite I C X,a € IRI} CRY.
xel

The completion of Hy is a complete Hilbert space denoted by H £ Hy and called the reproducing kernel
Hilbert space associated with kernel k.

Remark 1. Since e, € R¥, it follows that Hy C H C RX. We observe that Hj is dense in H. By definition,
we have ey € H for any x € X.

Definition 1.3. Then, we define a map (-,-) : Hy x Hg — R defined for all f,g € Hy such that f =
Y yerdxex and g = Zyej byey, as

(181, = Y Y axbyk(x,y) = Y by f(y) = ) axg(x).
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Lemma 1.4. The map (-,-) : Hy x Ho — R defined in Definition [1.3for any PDS kernel k : XX x X — R is an
inner product.

Proof. We can verify that the map (-,-) : Hy x Hp — R has the follow three properties.
1. Symmetry: By definition, (-,-) is symmetric.
2. Bilinearity: From symmetry, it suffices to show that (-, -) is linear in its first argument. Let ¢, € R
and f,g,h € Hp such that f =) ,crayer, g = Zyejbyey,h =) ,ek Cz€;. For simplicity, we assume
that I and | are disjoint. We observe that af + g =Y cuj(aaxlizery + Bbxlizepy)ex. It follows

that
(af +Bghy =Y Y (waxljpery + Bbxlrepy)ek(x,2) = a(f, 1) + B (g,h).
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3. Positive semi-definiteness: We will show that for any f € Hy that can be written as f =Y, cjaxey,
we have (f, f) > 0. Recall that for any PDS kernel k and sample I, the associated gram matrix K is
symmetric and positive semidefinite. It follows that for any column vector a € R, we have

(f,f) =Y axk(x,y)ay =a"Ka>0.
Xy

It follows that (-,-) is an inner product on pre-Hilbert space Hj. O

Theorem 1.5 (RKHS). Let k: X x X — R be a PDS kernel. Then, there exists a Hilbert space IH and a mapping
® : X — H such that for all x,x’ € X,

k(x,x") = (®(x), D(x") )y -

Furthermore, H has the following reproducing property, h(x) = ((h(-),k(x,-))yy forallh € Hand x € X.



Proof. We define a feature map ® : X — H as ®(x) £ ¢, for all x € X, where e, is the kernel evaluation
map defined in Definition associated with PDS kernel k. It follows that ®(x) € H C RY from Re-
mark|[l} From definition, it follows that [®(x)](x") = k(x,x') for all x’ € X. From the definition of inner
product on pre-Gilbert space Hy, we observe that for all x,x’ € X,

(P(x),P(x)) = (ex,ep) = k(x,x").

We can verify that the inner product (-,-) : Hy x Hy — R has the following two additional properties.
1. Reproducing property: Consider a kernel evaluation map e,y € Hand f € Hpsuchthat f =Y, cjaxex
for any finite ] C X and a € R!. Then,

(frew) =} axk(x,x') =} axex(x') = f(x').

xel xel

2. Definiteness: From the Cauchy-Schwarz inequality for inner products and reproducing property
of IH, we observe that for any f € Hp and x € X,

)P = [(frex) P < (f f) {exsex) = (a7 Ka)k(x,x).

It follows that f(x) is bounded for any f € Hp and x € X.
Since (-, -) is an inner product on Hy which is bounded, it follows that H) is a pre-Hilbert space which
can be made complete to form the Hilbert space H = Hy, where H is dense in H. O

1.1 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written as a linear combina-
tion of the functions k(x;, -), where x; is a sample point. The following theorem known as the representer
theorem shows that this is in fact a general property that holds for a broad class of optimization prob-
lems, including that of SVMs with no offset.

Theorem 1.6 (Representer). Let k: XX x X — IR be a PDS kernel with associated kernel evaluation map ey for
any x € X and corresponding RKHS H. Then, for any non decreasing function G : R — R and any loss function
L:R"™ — R U {+oo}, the optimization problem

inF(h) = inG(||h L(h(xq),...,h ,
argmin F (i) = argmin G|l gp) + L(h(x1) .., h(n)

has a solution of the form h* = Y ", a;ey,. If G is strictly increasing, then any solution has this form.

Proof. Let Hy = span(ey, : i € [m]). We can write the RKHS H as the direct sum of span of H; and
the orthogonal space Hi, i.e. H =H; @ H;. Hence, any hypothesis & € H, can be written as h =
hy + hi. By the reproducing property, we have h(x;) = (h,ex,) = (hy,ex,) = hi(x;) for all i € [m].
Therefore, L(h(x1),...,h(xm)) = L(h1(x1),...,h1(xn)). Further, since G is non-decreasing G(||h1|yy) <
G(\/||h1||§{ + ||hf ‘E{) = G(||h||gy)- It follows that F(hy) < F(h). Since G is strictly increasing, F(h1) <
F(h) for all h such that || ||; > 0. Hence, any solution of the optimization problem must be in Hy. [

Remark 2. Consider a PDS kernel k on input space X, with associated kernel evaluation map e, for
each x € X and RKHS H. Representer theorem states that for any feature map ® : X — H, it suf-
fices to focus on its projection (®(x1),...,P(xm)) = ((P(x),ex,),..., (P(x),ex,)) on the subspace H;
spanned by (ey,,...,ex,) of unlabeled training sample x € X". We observe that the resulting map
D(x1),...,P(xp) : X = R™

2 Empirical kernel map

Advantages of working with a kernel is that no explicit definition of a feature map & is needed. Fol-
lowing are the advantages of working with explicit feature map .

(i) For primal method in various optimization problems.

(ii) To derive an approximation based on ®.
(iii) Theoretical analysis where ® is more convenient.



Definition 2.1 (Empirical kernel map). Given an unlabeled training sample x € X" and a PDS kernel
k, the associated empirical kernel map E : X — R™ is a feature mapping defined as E £ [ey, ... ex,] T
such that forally € X

ex, (y) k(x1,y)
Ey)=| : |=|
ex, (¥) k(xm,y)

Remark 3. The empirical kernel map evaluated at a point y € X is the vector of k-similarity measure of y
with each of the m training points.

Remark 4. For any i € [m], we have E(x;) = K" ¢; = Ke;, where ¢; is the ith unit vector. Hence, (E(x;), E(xj)) =
<Kel-,Ke]-> = <€i,K2€]’> . That is, the kernel matrix associated with the empirical kernel map E is K.

Definition 2.2. Let K" denote the pseudo-inverse of the gram matrix K and let (K*)% denote the SPSD
matrix whose square is K. We define a feature map F : X — R" using the empirical kernel map E and

the matrix (K*)% forally € X, as
1
F(y) = (K")2E(y).
Remark 5. Using the identity KKK = K, we see that

(F(x;),F(x})) = <(K+)%E(xi),(K+)%E(xj)> = <1<ei,1<+1<ej> — (e, Ke;).

Thus, the kernel matrix associated to map F is K.

Remark 6. For the feature mapping G : X — R™ defined by G(x) £ K'E(x) for all x € X, we check that
the
(G(x:),G(x;)) = <K+E(xi),K+E(xj)> = <Kel-,K+e]-> = <ei,KK+e]->.

Thus, the kernel matrix associated to map G is KK*.

3 Kernel-based algorithms

We can generalize SVMs in the input space X to the SVMs in the feature space H mapped by the feature
mapping ®. Recall that k(y,z) = (®(y),P(z)) for all y,z € X, and hence the gram matrix K generated
by the kernel map k and the unlabeled training sample x € X™ suffices to describe the SVM solution
completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors x,y € R" asxoy €
R™ such that (x o y); = x;y; for all i € [m].

Remark 7. We can write the dual problem for non-separable training data in this high dimensional space
H as

max1'a — %(D{ oy) 'K(aoy)
e
subject to: 0 < a < C and oaTy =0.

The solution hypothesis /1 can be written as h(x) = sign (¥1"; a;y;k(x;,x) +b), where b = y; — (a o
y) " Ke; for all x; such that 0 < a; < C.
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