

Lecture-08: Reproducing Kernel Hilbert Space (RKHS)

1 Reproducing Kernel Hilbert Space (RKHS)

Definition 1.1. For any PDS kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, we can define a kernel evaluation map $e_x : \mathcal{X} \rightarrow \mathbb{R}$ at a point $x \in \mathcal{X}$ by $e_x(x') \triangleq k(x, x')$ for all $x' \in \mathcal{X}$.

Definition 1.2. We can define a pre-Hilbert space \mathbb{H}_0 as the span of kernel evaluations defined in Definition 1.1, at finitely many elements of \mathcal{X} . That is,

$$\mathbb{H}_0 \triangleq \left\{ \sum_{x \in I} a_x e_x : \text{finite } I \subseteq \mathcal{X}, a \in \mathbb{R}^I \right\} \subseteq \mathbb{R}^{\mathcal{X}}.$$

The completion of \mathbb{H}_0 is a complete Hilbert space denoted by $\mathbb{H} \triangleq \overline{\mathbb{H}_0}$ and called the *reproducing kernel Hilbert space* associated with kernel k .

Remark 1. Since $e_x \in \mathbb{R}^{\mathcal{X}}$, it follows that $\mathbb{H}_0 \subseteq \mathbb{H} \subseteq \mathbb{R}^{\mathcal{X}}$. We observe that \mathbb{H}_0 is dense in \mathbb{H} . By definition, we have $e_x \in \mathbb{H}$ for any $x \in \mathcal{X}$.

Definition 1.3. Then, we define a map $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \rightarrow \mathbb{R}$ defined for all $f, g \in \mathbb{H}_0$ such that $f = \sum_{x \in I} a_x e_x$ and $g = \sum_{y \in J} b_y e_y$, as

$$\langle f, g \rangle_{\mathbb{H}_0} \triangleq \sum_{x \in I} \sum_{y \in J} a_x b_y k(x, y) = \sum_{y \in J} b_y f(y) = \sum_{x \in I} a_x g(x).$$

Lemma 1.4. The map $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \rightarrow \mathbb{R}$ defined in Definition 1.3 for any PDS kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is an inner product.

Proof. We can verify that the map $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \rightarrow \mathbb{R}$ has the follow three properties.

1. *Symmetry:* By definition, $\langle \cdot, \cdot \rangle$ is symmetric.
2. *Bilinearity:* From symmetry, it suffices to show that $\langle \cdot, \cdot \rangle$ is linear in its first argument. Let $\alpha, \beta \in \mathbb{R}$ and $f, g, h \in \mathbb{H}_0$ such that $f = \sum_{x \in I} a_x e_x, g = \sum_{y \in J} b_y e_y, h = \sum_{z \in K} c_z e_z$. For simplicity, we assume that I and J are disjoint. We observe that $\alpha f + \beta g = \sum_{x \in I \cup J} (\alpha a_x \mathbb{1}_{\{x \in I\}} + \beta b_x \mathbb{1}_{\{x \in J\}}) e_x$. It follows that

$$\langle \alpha f + \beta g, h \rangle = \sum_{x \in I \cup J} \sum_{z \in K} (\alpha a_x \mathbb{1}_{\{x \in I\}} + \beta b_x \mathbb{1}_{\{x \in J\}}) c_z k(x, z) = \alpha \langle f, h \rangle + \beta \langle g, h \rangle.$$

3. *Positive semi-definiteness:* We will show that for any $f \in \mathbb{H}_0$ that can be written as $f = \sum_{x \in I} a_x e_x$, we have $\langle f, f \rangle \geq 0$. Recall that for any PDS kernel k and sample I , the associated gram matrix K is symmetric and positive semidefinite. It follows that for any column vector $a \in \mathbb{R}^I$, we have

$$\langle f, f \rangle = \sum_{x, y} a_x k(x, y) a_y = a^\top K a \geq 0.$$

It follows that $\langle \cdot, \cdot \rangle$ is an inner product on pre-Hilbert space \mathbb{H}_0 . □

Theorem 1.5 (RKHS). Let $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a PDS kernel. Then, there exists a Hilbert space \mathbb{H} and a mapping $\Phi : \mathcal{X} \rightarrow \mathbb{H}$ such that for all $x, x' \in \mathcal{X}$,

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathbb{H}}.$$

Furthermore, \mathbb{H} has the following reproducing property, $h(x) = \langle (h(\cdot)), k(x, \cdot) \rangle_{\mathbb{H}}$ for all $h \in \mathbb{H}$ and $x \in \mathcal{X}$.

Proof. We define a feature map $\Phi : \mathcal{X} \rightarrow \mathbb{H}$ as $\Phi(x) \triangleq e_x$ for all $x \in \mathcal{X}$, where e_x is the kernel evaluation map defined in Definition 1.1 associated with PDS kernel k . It follows that $\Phi(x) \in \mathbb{H} \subseteq \mathbb{R}^{\mathcal{X}}$ from Remark 1. From definition, it follows that $[\Phi(x)](x') = k(x, x')$ for all $x' \in \mathcal{X}$. From the definition of inner product on pre-Gilbert space \mathbb{H}_0 , we observe that for all $x, x' \in \mathcal{X}$,

$$\langle \Phi(x), \Phi(x') \rangle = \langle e_x, e_{x'} \rangle = k(x, x').$$

We can verify that the inner product $\langle \cdot, \cdot \rangle : \mathbb{H}_0 \times \mathbb{H}_0 \rightarrow \mathbb{R}$ has the following two additional properties.

1. *Reproducing property:* Consider a kernel evaluation map $e_{x'} \in \mathbb{H}$ and $f \in \mathbb{H}_0$ such that $f = \sum_{x \in I} a_x e_x$ for any finite $I \subseteq \mathcal{X}$ and $a \in \mathbb{R}^I$. Then,

$$\langle f, e_{x'} \rangle = \sum_{x \in I} a_x k(x, x') = \sum_{x \in I} a_x e_x(x') = f(x').$$

2. *Definiteness:* From the Cauchy-Schwarz inequality for inner products and reproducing property of \mathbb{H} , we observe that for any $f \in \mathbb{H}_0$ and $x \in \mathcal{X}$,

$$|f(x)|^2 = |\langle f, e_x \rangle|^2 \leq \langle f, f \rangle \langle e_x, e_x \rangle = (a^\top K a) k(x, x).$$

It follows that $f(x)$ is bounded for any $f \in \mathbb{H}_0$ and $x \in \mathcal{X}$.

Since $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{H}_0 which is bounded, it follows that \mathbb{H}_0 is a pre-Hilbert space which can be made complete to form the Hilbert space $\mathbb{H} \triangleq \overline{\mathbb{H}_0}$, where \mathbb{H}_0 is dense in \mathbb{H} . \square

1.1 Representer theorem

Observe that modulo the offset b , the hypothesis solution of SVMs can be written as a linear combination of the functions $k(x_i, \cdot)$, where x_i is a sample point. The following theorem known as the representer theorem shows that this is in fact a general property that holds for a broad class of optimization problems, including that of SVMs with no offset.

Theorem 1.6 (Representer). *Let $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a PDS kernel with associated kernel evaluation map e_x for any $x \in \mathcal{X}$ and corresponding RKHS \mathbb{H} . Then, for any non decreasing function $G : \mathbb{R} \rightarrow \mathbb{R}$ and any loss function $L : \mathbb{R}^m \rightarrow \mathbb{R} \cup \{+\infty\}$, the optimization problem*

$$\arg \min_{h \in \mathbb{H}} F(h) = \arg \min_{h \in \mathbb{H}} G(\|h\|_{\mathbb{H}}) + L(h(x_1), \dots, h(x_m)),$$

has a solution of the form $h^* = \sum_{i=1}^m \alpha_i e_{x_i}$. If G is strictly increasing, then any solution has this form.

Proof. Let $\mathbb{H}_1 = \text{span}(e_{x_i} : i \in [m])$. We can write the RKHS \mathbb{H} as the direct sum of span of \mathbb{H}_1 and the orthogonal space \mathbb{H}_1^\perp , i.e. $\mathbb{H} = \mathbb{H}_1 \oplus \mathbb{H}_1^\perp$. Hence, any hypothesis $h \in \mathbb{H}$, can be written as $h = h_1 + h_1^\perp$. By the reproducing property, we have $h(x_i) = \langle h, e_{x_i} \rangle = \langle h_1, e_{x_i} \rangle = h_1(x_i)$ for all $i \in [m]$. Therefore, $L(h(x_1), \dots, h(x_m)) = L(h_1(x_1), \dots, h_1(x_m))$. Further, since G is non-decreasing $G(\|h_1\|_{\mathbb{H}}) \leq G(\sqrt{\|h_1\|_{\mathbb{H}}^2 + \|h_1^\perp\|_{\mathbb{H}}^2}) = G(\|h\|_{\mathbb{H}})$. It follows that $F(h_1) \leq F(h)$. Since G is strictly increasing, $F(h_1) < F(h)$ for all h such that $\|h_1^\perp\|_{\mathbb{H}} > 0$. Hence, any solution of the optimization problem must be in \mathbb{H}_1 . \square

Remark 2. Consider a PDS kernel k on input space \mathcal{X} , with associated kernel evaluation map e_x for each $x \in \mathcal{X}$ and RKHS \mathbb{H} . Representer theorem states that for any feature map $\Phi : \mathcal{X} \rightarrow \mathbb{H}$, it suffices to focus on its projection $(\Phi(x_1), \dots, \Phi(x_m)) = (\langle \Phi(x), e_{x_1} \rangle, \dots, \langle \Phi(x), e_{x_m} \rangle)$ on the subspace \mathbb{H}_1 spanned by $(e_{x_1}, \dots, e_{x_m})$ of unlabeled training sample $x \in \mathcal{X}^m$. We observe that the resulting map $\Phi(x_1), \dots, \Phi(x_m) : \mathcal{X} \rightarrow \mathbb{R}^m$.

2 Empirical kernel map

Advantages of working with a kernel is that no explicit definition of a feature map Φ is needed. Following are the advantages of working with explicit feature map Φ .

- (i) For primal method in various optimization problems.
- (ii) To derive an approximation based on Φ .
- (iii) Theoretical analysis where Φ is more convenient.

Definition 2.1 (Empirical kernel map). Given an unlabeled training sample $x \in \mathcal{X}^m$ and a PDS kernel k , the associated *empirical kernel map* $E : \mathcal{X} \rightarrow \mathbb{R}^m$ is a feature mapping defined as $E \triangleq [e_{x_1} \dots e_{x_m}]^\top$ such that for all $y \in \mathcal{X}$

$$E(y) = \begin{bmatrix} e_{x_1}(y) \\ \vdots \\ e_{x_m}(y) \end{bmatrix} = \begin{bmatrix} k(x_1, y) \\ \vdots \\ k(x_m, y) \end{bmatrix}.$$

Remark 3. The empirical kernel map evaluated at a point $y \in \mathcal{X}$ is the vector of k -similarity measure of y with each of the m training points.

Remark 4. For any $i \in [m]$, we have $E(x_i) = K^\top e_i = K e_i$, where e_i is the i th unit vector. Hence, $\langle E(x_i), E(x_j) \rangle = \langle K e_i, K e_j \rangle = \langle e_i, K^2 e_j \rangle$. That is, the kernel matrix associated with the empirical kernel map E is K^2 .

Definition 2.2. Let K^\dagger denote the pseudo-inverse of the gram matrix K and let $(K^\dagger)^{\frac{1}{2}}$ denote the SPSD matrix whose square is K^\dagger . We define a feature map $F : \mathcal{X} \rightarrow \mathbb{R}^m$ using the empirical kernel map E and the matrix $(K^\dagger)^{\frac{1}{2}}$ for all $y \in \mathcal{X}$, as

$$F(y) \triangleq (K^\dagger)^{\frac{1}{2}} E(y).$$

Remark 5. Using the identity $KK^\dagger K = K$, we see that

$$\langle F(x_i), F(x_j) \rangle = \langle (K^\dagger)^{\frac{1}{2}} E(x_i), (K^\dagger)^{\frac{1}{2}} E(x_j) \rangle = \langle K e_i, K^\dagger K e_j \rangle = \langle e_i, K e_j \rangle.$$

Thus, the kernel matrix associated to map F is K .

Remark 6. For the feature mapping $G : \mathcal{X} \rightarrow \mathbb{R}^m$ defined by $G(x) \triangleq K^\dagger E(x)$ for all $x \in \mathcal{X}$, we check that the

$$\langle G(x_i), G(x_j) \rangle = \langle K^\dagger E(x_i), K^\dagger E(x_j) \rangle = \langle K e_i, K^\dagger K e_j \rangle = \langle e_i, K K^\dagger e_j \rangle.$$

Thus, the kernel matrix associated to map G is KK^\dagger .

3 Kernel-based algorithms

We can generalize SVMs in the input space \mathcal{X} to the SVMs in the feature space \mathbb{H} mapped by the feature mapping Φ . Recall that $k(y, z) = \langle \Phi(y), \Phi(z) \rangle_{\mathbb{H}}$ for all $y, z \in \mathcal{X}$, and hence the gram matrix K generated by the kernel map k and the unlabeled training sample $x \in \mathcal{X}^m$ suffices to describe the SVM solution completely.

Definition 3.1 (Hadamard product). We define Hadamard product of two vectors $x, y \in \mathbb{R}^m$ as $x \circ y \in \mathbb{R}^m$ such that $(x \circ y)_i \triangleq x_i y_i$ for all $i \in [m]$.

Remark 7. We can write the dual problem for non-separable training data in this high dimensional space \mathbb{H} as

$$\begin{aligned} & \max_{\alpha} \mathbf{1}^\top \alpha - \frac{1}{2} (\alpha \circ \alpha)^\top K (\alpha \circ \alpha) \\ & \text{subject to: } 0 \leq \alpha \leq C \text{ and } \alpha^\top y = 0. \end{aligned}$$

The solution hypothesis h can be written as $h(x) = \text{sign}(\sum_{i=1}^m \alpha_i y_i k(x_i, x) + b)$, where $b = y_i - (\alpha \circ y)^\top K e_i$ for all x_i such that $0 < \alpha_i < C$.