Lecture-09: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). Consider a concept class C C Y where the cost of computational repre-
sentation of an input vector x € X is of order n, and of a concept c is of order size(c). The concept class
C is said to be PAC-learnable if there exists an algorithm A and a polynomial function poly( -,+,,) such
that P{R(h;) <€} >1— 6 for any

(@) €6>0,

(b) distribution D € M(X),

(c) target conceptc € C,

(d) hypothesis h, returned by the algorithm A,

(e) sample z € (X x Y)™ of size m i.i.d. generated under distribution D, and

(f) of sample size m > poly(1/¢,1/5,n,size(c)).

If A further runs in poly(1/€,1/6,n,size(c)), then C is said to be efficiently PAC-learnable. When such
an algorithm A exists, it is called a PAC-learning algorithm for C.

Remark 1. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after
observing a sample of size polynomial in 1/€ and 1/¢ is approximately correct (error at most €) with
high probability (at least 1 — J), which justifies the PAC terminology. The 6 > 0 is used to define the
confidence 1 — 6 and € > 0 the accuracy 1 — €.

Remark 2. Note that if the running time of the algorithm is polynomial in 1/€ and 1/J, then the sample
size m must also be polynomial if the full sample is received by the algorithm.

Remark 3. We make the following observations for the PAC framework.

(a) Itis a distribution-free model.

(b) The training sample and the test examples are drawn from the same distribution D.

(c) It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets

Consider a binary classification problem where Y = {0,1} and a target concept c € C C Y¥ such that
y = c(x) for any labeled example. Let H C Y be a finite set of hypothesis functions for binary classifi-
cation with loss function £: X X Y = 1yj(y)+,}, and consider an i.i.d. sample z € (X x Y)™. In this case

for a hypothesis 1 € H and labeled sample z € (X x Y)™, empirical risk is R(h) = % Yt £(x;,y;) and
generalization risk IE/(X,c(X)) = ER(h) for X distributed identically to an unlabeled sample.

2.1 Consistent case

Assumption 2.1 (Consistent hypothesis set). We assume that c € H and hence for any sample z, there
exists h,; € H such that empirical risk R(h;) = 0.

Definition 2.2. Consider the probability space (Q,F, D). Fix € > 0, and define events Ej, £ {R(h) < €} U
{R(h) # 0} for each hypothesis 1 € H.

Theorem 2.3 (Learning bound). For any €,6 > 0 and sample size m > 1 <ln|H | + ln%), we have the in-
equality P(NpegEy) = 1 — 8 holds.

Proof. We provide a uniform convergence bound for all consistent hypotheses h, € H such that R(h;) =0,
since we don’t know which of these is selected by the algorithm A. We fix a hypothesis h € H and

observe that .

Lermy=0) = Lryr, (n(xp)=v} = Hl{h(xn:m =110 - X, Y).

i=1



Since R(h) = E/(X;,Y;), for any i.i.d. labeled training sample Z € (X x Y)™, the probability of getting
zero empirical risk is

P(E;) =E[1rc] = Lirmyse} E] [ Linix)=vi} = Lir(y»ey (1 = R(1))™ < (1 - €)™
i=1

Using this bound and union bound to sum the probability of union of events, we can bound the proba-
bility of getting a consistent hypothesis with the generalization risk exceeding € as

P(UpenEj) < ) P(Ej) < |H|(1—¢e)" < |H|e™ ™
heH

Setting the right hand side to be equal to 6 completes the proof. O

2.2 Inconsistent case
In many practical cases, the hypothesis set H may not consist of the target concept ¢ € C.

Theorem 2.4 (Learning bound). Let H be a finite hypothesis set. Then, for any 6 > 0,

P(Pen {R(h) <R + \/Z}n(lnH +ln§)}) >1-6.

Proof. Let h € H and fix € > 0. Recall that R(h) = Ly, Ly, 4n(x,)} and R(h) = ER(h). Applying
Theorem to bounded random variables 1y +j,(x,); € {0,1} such that 0% = m, together with union
bound, we get the generalization bound for single hypothesis € H, as

INagE

(Lgy,2n(x,)y — R(R))

P{|R(h) —R(h)| > €} = P{

> me} < 2exp(—2me?).

i=1

Using the union bound and applying the generalization bound, we get

P(Uper {R(h) —R(h) > e}) < Y_ P{R(h) — R(h) > e} <2|H|exp(—2me?).
heH

Setting the right-hand side to be equal to § completes the proof. O

Remark 4. We observe the following from the upper bound on the generalized risk.

1. For finite hypothesis set H, R(h) < R(h) + O <\/ IngnH> .

The number of bits needed to represent H is log, |H]|.
A larger sample size m guarantees better generalization.
The bound increases logarithmically with |H |

The bound is worse for inconsistent case 4/ gz\ | compared to lng‘Hl for the consistent case.

For a fixed |H|, to attain the same guarantee as in the consistent case, a quadratically larger labeled
sample is needed.

7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling
the size of the hypothesis set: a larger hypothesis set is penalized by the second term but could
help reduce the empirical error, that is the first term. But, for a similar empirical error, it suggests
using a smaller hypothesis set.
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A Hoeffding’s lemma

Lemma A.1 (Hoeffding). Let X be a zero-mean random variable with X € [a,b] for b > a. Then, for any t > 0,
we have .,
to(b—a
Ele'X] <e e
Proof. We note that 1 < 0 < b since EX = 0. Any x € [4,b] can be written as x = Aa + (1 — A)b for
AE Z %=X € [0,1]. We fix t > 0 and observe that the map f : R — RR defined as f(x) £ ¢/ for each x € R,



is convex. From the convexity of the function f, we have f(x) < Af(a) + (1 — A) f(b). It follows that for
any random variable X € [a,b] and t > 0, we have

b—X,, X—ay

— e+ I e,

e =f(X) <

Taking expectation on the both sides of the above equation, from the linearity of the expectations, and
the fact that E[X] = 0, we get

b —a b —a
IX] < ta th_ ta tb—a)\ 2 ¢(t)
Ele ]\—b_ae +b_ae e (b—a+7b—ae ) e\,

where the function ¢ : Ry — R is defined as ¢(t) = ta + In (TL: + ﬁet(b’”)) for each t > 0. We can

write the first two derivatives of this function ¢(t) as

P T — ’
% _ bﬂfaet(bﬂz) bfueft(bfa) _ fa !
" —abe~t(0—a) 5 « (1—a)etb=a) (b—a)?
= = — <
o) (pLetb-a) — a)2 (b-a) (1—a)et0-0) 4o )\ (1—a)etC-a) ) )~ 4 7

where we have denoted a = ;=% > 0. The result follows from the second order expansion of ¢(t) =

$(0) +t¢'(0) + %gb”(@) for some 0 € [0,t]. This implies that ¢(t) < M and the result follows. [

Theorem A.2 (Hoeffding). Consider an independent random vector X : Q3 — R™ such that X; € [a;,b;] for
each i € [m] and define o> £ Y1 | (b; — a;)?. Then, for any € > 0 and Sy, = Y.I" | X, we have

2¢2 2¢2
P{Su —ESy >¢€} <exp 7 ) P{Sy —ES; < —€} <exp -5 )

Proof. We define zero-mean random variables Y; £ X; — [EX; for each i € [m]. We observe that (Y;:i €
[m]) is an independent sequence and Y £ Y™ | Y; = S,; — ES,,. From the definition of indicator sets and
for any increasing function ¢ : R —+ R, we can write

P(Y) Z ¢(Y)Liyzey = Pp(€)Liysey-

Taking expectation on both sides for the mapping ¢ : x — ¢!*, we get the Chernoff bound from the
independence of Y;, as

P{Sy —ESy >¢e} <e “Elexp(t(Sm —ESm))] = etelm—[l]E[exp(t(Xi —EX;))].

We can upper-bound each term in the product by Lemma for zero-mean random variable Y; €
[a; — EX;,b; — EX;] and use the definition of 02, to get

m 22

P (S~ ES >} < ¢ Texp(P6 — 0)/8) oxp (—te + - ).
i=1

First upper bound follows by observing that the upper bound is minimized for the choice of t* = %¢.

Second upper bound follows by repeating the same steps for bounded independent random vector —X

and € > 0. O
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