
Lecture-09: PAC Learning

1 PAC learning model

Definition 1.1 (PAC-learning). Consider a concept class C ⊆ YX where the cost of computational repre-
sentation of an input vector x ∈ X is of order n, and of a concept c is of order size(c). The concept class
C is said to be PAC-learnable if there exists an algorithm A and a polynomial function poly(·, ·, ·, ·) such
that P{R(hz)⩽ ϵ}⩾ 1 − δ for any
(a) ϵ,δ > 0,
(b) distribution D ∈M(X),
(c) target concept c ∈ C,
(d) hypothesis hz returned by the algorithm A,
(e) sample z ∈ (X× Y)m of size m i.i.d. generated under distribution D, and
(f) of sample size m ⩾ poly(1/ϵ,1/δ,n, size(c)).
If A further runs in poly(1/ϵ,1/δ,n, size(c)), then C is said to be efficiently PAC-learnable. When such
an algorithm A exists, it is called a PAC-learning algorithm for C.

Remark 1. A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm after
observing a sample of size polynomial in 1/ϵ and 1/δ is approximately correct (error at most ϵ) with
high probability (at least 1 − δ), which justifies the PAC terminology. The δ > 0 is used to define the
confidence 1 − δ and ϵ > 0 the accuracy 1 − ϵ.
Remark 2. Note that if the running time of the algorithm is polynomial in 1/ϵ and 1/δ, then the sample
size m must also be polynomial if the full sample is received by the algorithm.
Remark 3. We make the following observations for the PAC framework.
(a) It is a distribution-free model.
(b) The training sample and the test examples are drawn from the same distribution D.
(c) It deals with the question of learnability for a concept class C and not a particular concept.

2 Guarantees for finite hypothesis sets

Consider a binary classification problem where Y ≜ {0,1} and a target concept c ∈ C ⊂ YX such that
y = c(x) for any labeled example. Let H ⊂ YX be a finite set of hypothesis functions for binary classifi-
cation with loss function ℓ : X× Y 7→ 1{h(x) ̸=y}, and consider an i.i.d. sample z ∈ (X× Y)m. In this case
for a hypothesis h ∈ H and labeled sample z ∈ (X× Y)m, empirical risk is R̂(h) ≜ 1

m ∑m
i=1 ℓ(xi,yi) and

generalization risk Eℓ(X, c(X)) = ER̂(h) for X distributed identically to an unlabeled sample.

2.1 Consistent case

Assumption 2.1 (Consistent hypothesis set). We assume that c ∈ H and hence for any sample z, there
exists hz ∈ H such that empirical risk R̂(hz) = 0.

Definition 2.2. Consider the probability space (Ω,F, D). Fix ϵ > 0, and define events Eh ≜ {R(h)⩽ ϵ} ∪{
R̂(h) ̸= 0

}
for each hypothesis h ∈ H.

Theorem 2.3 (Learning bound). For any ϵ,δ > 0 and sample size m ⩾ 1
ϵ

(
ln |H|+ ln 1

δ

)
, we have the in-

equality P(∩h∈HEh)⩾ 1 − δ holds.

Proof. We provide a uniform convergence bound for all consistent hypotheses hz ∈ H such that R̂(hz) = 0,
since we don’t know which of these is selected by the algorithm A. We fix a hypothesis h ∈ H and
observe that

1{R̂(h)=0} = 1∩m
i=1{h(Xi)=Yi} =

m

∏
i=1

1{h(Xi)=Yi} =
m

∏
i=1

(1 − ℓ(Xi,Yi)).
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Since R(h) = Eℓ(Xi,Yi), for any i.i.d. labeled training sample Z ∈ (X× Y)m, the probability of getting
zero empirical risk is

P(Ec
h) = E[1Ec

h
] = 1{R(h)>ϵ}E

m

∏
i=1

1{h(Xi)=Yi} = 1{R(h)>ϵ}(1 − R(h))m ⩽ (1 − ϵ)m.

Using this bound and union bound to sum the probability of union of events, we can bound the proba-
bility of getting a consistent hypothesis with the generalization risk exceeding ϵ as

P(∪h∈HEc
h)⩽ ∑

h∈H
P(Ec

h)⩽ |H| (1 − ϵ)m ⩽ |H| e−mϵ.

Setting the right hand side to be equal to δ completes the proof.

2.2 Inconsistent case

In many practical cases, the hypothesis set H may not consist of the target concept c ∈ C.

Theorem 2.4 (Learning bound). Let H be a finite hypothesis set. Then, for any δ > 0,

P
(
∩h∈H

{
R(h)⩽ R̂(h) +

√
1

2m
(ln |H|+ ln

2
δ
)

})
⩾ 1 − δ.

Proof. Let h ∈ H and fix ϵ > 0. Recall that R̂(h) = 1
m ∑m

i=11{Yi ̸=h(Xi)} and R(h) = ER̂(h). Applying
Theorem A.2 to bounded random variables 1{Yi ̸=h(Xi)} ∈ {0,1} such that σ2 = m, together with union
bound, we get the generalization bound for single hypothesis h ∈ H, as

P
{∣∣R̂(h)− R(h)

∣∣⩾ ϵ
}
= P

{∣∣∣∣∣ m

∑
i=1

(1{Yi ̸=h(Xi)} − R(h))

∣∣∣∣∣⩾ mϵ

}
⩽ 2exp(−2mϵ2).

Using the union bound and applying the generalization bound, we get

P(∪h∈H
{

R̂(h)− R(h) > ϵ
}
)⩽ ∑

h∈H
P
{

R̂(h)− R(h) > ϵ
}
⩽ 2 |H|exp(−2mϵ2).

Setting the right-hand side to be equal to δ completes the proof.

Remark 4. We observe the following from the upper bound on the generalized risk.

1. For finite hypothesis set H, R(h)⩽ R̂(h) + O
(√

log2|H|
m

)
.

2. The number of bits needed to represent H is log2 |H|.
3. A larger sample size m guarantees better generalization.
4. The bound increases logarithmically with |H|.
5. The bound is worse for inconsistent case

√
log2|H|

m compared to log2|H|
m for the consistent case.

6. For a fixed |H|, to attain the same guarantee as in the consistent case, a quadratically larger labeled
sample is needed.

7. The bound suggests seeking a trade-off between reducing the empirical error versus controlling
the size of the hypothesis set: a larger hypothesis set is penalized by the second term but could
help reduce the empirical error, that is the first term. But, for a similar empirical error, it suggests
using a smaller hypothesis set.

A Hoeffding’s lemma

Lemma A.1 (Hoeffding). Let X be a zero-mean random variable with X ∈ [a,b] for b > a. Then, for any t > 0,
we have

E[etX ]⩽ e
t2(b−a)2

8 .

Proof. We note that a < 0 < b since EX = 0. Any x ∈ [a,b] can be written as x = λa + (1 − λ)b for
λ ≜ b−x

b−a ∈ [0,1]. We fix t > 0 and observe that the map f : R → R defined as f (x) ≜ etx for each x ∈ R,
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is convex. From the convexity of the function f , we have f (x)⩽ λ f (a) + (1 − λ) f (b). It follows that for
any random variable X ∈ [a,b] and t > 0, we have

etX = f (X)⩽
b − X
b − a

eta +
X − a
b − a

etb.

Taking expectation on the both sides of the above equation, from the linearity of the expectations, and
the fact that E[X] = 0, we get

E[etX ]⩽
b

b − a
eta +

−a
b − a

etb = eta
( b

b − a
+

−a
b − a

et(b−a)
)
≜ eϕ(t),

where the function ϕ : R+ → R+ is defined as ϕ(t) ≜ ta + ln
(

b
b−a +

−a
b−a et(b−a)

)
for each t > 0. We can

write the first two derivatives of this function ϕ(t) as

ϕ′(t) = a − aet(b−a)

b
b−a −

a
b−a et(b−a)

= a − a
b

b−a e−t(b−a) − a
b−a

,

ϕ′′(t) =
−abe−t(b−a)

( b
b−a e−t(b−a) − a

b−a )
2
= (b − a)2

(
α

(1 − α)e−t(b−a) + α

)(
(1 − α)e−t(b−a)

(1 − α)e−t(b−a) + α)

)
⩽

(b − a)2

4
,

where we have denoted α = −a
b−a ⩾ 0. The result follows from the second order expansion of ϕ(t) =

ϕ(0) + tϕ′(0) + t2

2 ϕ′′(θ) for some θ ∈ [0, t]. This implies that ϕ(t)⩽ t2(b−a)2

8 and the result follows.

Theorem A.2 (Hoeffding). Consider an independent random vector X : Ω → Rm such that Xi ∈ [ai,bi] for
each i ∈ [m] and define σ2 ≜ ∑m

i=1(bi − ai)
2. Then, for any ϵ > 0 and Sm ≜ ∑m

i=1 Xi, we have

P{Sm − ESm ⩾ ϵ}⩽ exp
(
−2ϵ2

σ2

)
, P{Sm − ESm ⩽−ϵ}⩽ exp

(
−2ϵ2

σ2

)
.

Proof. We define zero-mean random variables Yi ≜ Xi − EXi for each i ∈ [m]. We observe that (Yi : i ∈
[m]) is an independent sequence and Y ≜ ∑m

i=1 Yi = Sm −ESm. From the definition of indicator sets and
for any increasing function ϕ : R → R+, we can write

ϕ(Y)⩾ ϕ(Y)1{Y⩾ϵ} ⩾ ϕ(ϵ)1{Y⩾ϵ}.

Taking expectation on both sides for the mapping ϕ : x 7→ etx, we get the Chernoff bound from the
independence of Yi, as

P{Sm − ESm ⩾ ϵ}⩽ e−tϵE[exp(t(Sm − ESm))] = e−tϵ
m

∏
i=1

E[exp(t(Xi − EXi))].

We can upper-bound each term in the product by Lemma A.1 for zero-mean random variable Yi ∈
[ai − EXi,bi − EXi] and use the definition of σ2, to get

P{Sm − ESm ⩾ ϵ}⩽ e−tϵ
m

∏
i=1

exp(t2(bi − ai)
2/8) = exp

(
−tϵ +

t2σ2

8

)
.

First upper bound follows by observing that the upper bound is minimized for the choice of t∗ = 4ϵ
σ2 .

Second upper bound follows by repeating the same steps for bounded independent random vector −X
and ϵ > 0.
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