Lecture-11: Growth functions and VC-dimension

1 Growth function

Rademacher complexity can be bounded in terms of the growth function.

Definition 1.1 (Dichotomy). A dichotomy of an unlabeled sample x € X" using a hypothesis h € H C Y*

is the generated label sequence hy = (h(x1),...,h(xy)) € Y. For a hypothesis set H C Y¥, the set of

dichotomies of sample x € X", is the set of m-length label sequences Hy = {hy:h € H} C Y™.

Definition 1.2 (Growth function). For a hypothesis set H, the growth function I1y : Z — Z is defined

as T (m) = maxycoom |Hy| = maxyeom | {hy :h € H}|.

Remark 1. Growth function is a purely combinatorial measure, and the following holds true for it.

(a) Itis the maximum number of distinct ways in which m points can be classified using hypotheses in
H. Note that it is maximum and not supremum, since there are finitely many elements in each set
H,. Specifically, |Hy| < |Y|™.

(b) It is a measure of richness of the hypothesis set H.

(c) It doesn’t depend on the unknown distribution D, unlike Rademacher complexity.

Lemma 1.3 (Massart). Consider a finite set A C R™ with r £ max,c 4 ||u||,, and independent Rademacher
random vector o : Q0 — {—1,1}". Then, we have E[L sup,,_ , (o, u)] < = 21n|A|.

Proof. Fix t > 0. Applying Jensen’s inequality to the convex function f(x) = e"*, rearranging terms,
upper bounding the supremum of positive numbers by its sum, and linearity of expectatlon we obtain

et]EsupxeA<fo> g ]EetsupxeA<‘7/x> — ]Esupgt<‘7/x> g E Z et<‘7'x> — Z ]Egt<‘7/x>'
XEA xeA xeA

From the independence of Rademacher random vector ¢, the application of Hoeffding lemma for each
product term where —t |x;| < toyx; < t|x;| for all i € [m], and the definition of r, we get
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Taking the natural log of both sides and dividing by ¢, we get Esup,_, (7,x) < 1In|A| + ” for all
t > 0. It follows that Esup, , (7, x) < infi~o }In|A| + t’ and the upper bound is m1n1m1zed for t* £
1 .

+1/2In|Al. We get the result by dividing the both sides of this minimized upper bound by m. O

Corollary 1.4. Consider hypothesis set H C Y for binary labels Y = {—1,1}, then Ry, (H) < \/ 2 InTTy (m).

Proof. We fix an unlabeled sample x € X" and hypothesis 1 € H. Recall that hy = (h(x1),...,h(xy))) €
Y™ and we denote the dichotomy set by Hy = {hy:h € H} C Y™. Any vector y € Y™ has norm ||y||, =
v/m. In particular, any vector hy € Hy has norm /m. Applying Massart’s lemma to the finite set Hy,
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R (H) = ExRyx(H) = ExE;sup — (0,hy) = E,Ey sup — (0,u) <E4{/ —In|Hy|.
heH ™M ueH, m m

The result follows from the monotonicity of log and the definition of growth function. O

Corollary 1.5 (Growth function generalization bound). Consider hypothesis set H C Y for binary labels
Y £ {—1,1}. Then, for any 6 >0

P( N {R(h) < R(h) + \/ilnHH(m) + \/;nln(ls}) >1-0.
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Remark 2. Growth function bounds can be also derived directly without using Rademacher complex-
ity bounds. The resulting bound is P( Unen {|R(h) = R(h)| > e}) < 41 (2m)e~me"/8, Taking & >

4HH(2m)e’m€2/8, we get \/% In$ + $1InI1y(2m) < e. That is, the generalization bound is

P(N {R(h) gﬁ(h)+\/i<ln§+lnHH(2m)>}) >1-0.
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The generalization bound obtained from this bound differs from Corollary 1.5 only in constants.

Remark 3. The computation of the growth function may not be always convenient since, by definition,
it requires computing Iy (m) for all m € IN.

2 Vapnik-Chervonenkis (VC) dimension

The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth
function or the Rademacher Complexity. We will consider the target space Y = {—1,1} in the following.

Definition 2.1 (Shattering). An unlabeled sample x € X™ is said to be shattered by a hypothesis set
H C Y* when this set realizes all possible dichotomies of x, that is when |Hy| = [Y|™.

Definition 2.2 (VC-dimension). The VC-dimension of a hypothesis set H is the size of the largest unla-
beled sample that can be fully shattered by H. That is, VC-dim(H) £ max {m € Z : [Ty (m) =2"}.

Remark 4. By definition VC-dim(H) = d implies that there exists an unlabeled sample x € X? of size d

that can be fully shattered, i.e. |[Hy| =Y |d. This does not imply that all unlabeled samples of size d or
less are fully shattered. In fact, this is typically not the case.

Remark 5. We observe that if a sample x € X"+ can be fully shattered, i.e. |Hy| = \H|m+1. That is, for
each y € Y"*1 there exists 1/ € H such that iy = y. We take x’ € X" such that x} = x; for i € [m], then
hZ' = (¥1,...,ym). That is, a subset of size m can also be fully shattered. It follows that if no unlabeled
samples of size m are fully shattered, then no unlabeled samples of size m + 1 can be fully shattered.

Remark 6. To compute the VC-dimension of a hypothesis set, we will typically show a lower bound for
its value and then a matching upper bound. To show a lower bound d for VC-dim(H), it suffices to
show that a sample x € X* can be shattered by hypothesis set H. To show an upper bound, we need to
prove that no sample x € X?*1 can be shattered by hypothesis set H. This step is typically more difficult.

Example 2.3 (Intervals on the real line). For binary labels Y £ {—1,1} and input space X = R,
consider a hypothesis set H C YR of separating intervals on real line R defined as

H: {x — ]l[u,b](x) - ]].[a/b]c (x) ta,be ]R} C y]R‘

We observe that for d = 2, possible dichotomies are Y4 = {(—1,—1),(—1,1),(1,—1),(1,1)}. Let
x € R%, then we can find 4,b € R such that corresponding h*? € H achieves any dichotomy in
Y4, To show this, we can assume that x; < x, without any loss of generality, and observe that for
any h*? € H

(=1,-1), xp<aorx;>borx; <a<b<uxp,
hb — (*1/1)1 x1<a<x<bpb,
) (1,-1), a<x<b<uxy,

(1,1), a<x<x<b.

Further, for any sample x € R3 such that x; < x, < x3 there is no a,b € R such that h?gb =(1,-1,1).
That is, no set of three points can be shattered, and hence VC-dim(H) = 2.

Remark 7. The VC-dimension for hyperplanes in any vector space of dimension d < oo can be shown to
be at most d + 1.



Definition 2.4. We define ®;: Z, — Z, as ®4(m) = Zfl:o (") foreachm,d € Z,.

Lemma 2.5. For any d,m € Z the following properties hold for ®;.
(LZ) CD()(W[) = (Dd(O) =1.

(b) g1 (m—1) + By(m — 1) = Dy(m),

(c) ®y(m) < (em/d)? for m > d.

Proof. Recall that ®;(m) = Y.4_ (") foreach m,d € Z.,.

(a) Follows from the definition. ‘ ‘

(b) Recall that (") + ("7 1) = (") (4 + =) = (). Summing both sides over i € {0,...,d} and from
the definition of <I>d( ), we obtain the result.

(c) Form >dand 0 <i<d, wehave (d)d > 1. Therefore,
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From Binomial theorem, we get } /", (T) (i> = (1 + %) .Since 1+ x < e* for all x € R, we get

m

m
(1 + %) < e, and hence the result follows.
O

Theorem 2.6 (Sauer). Consider hypothesis set H C Y for binary labels Y = {—1,1} with VC-dim(H) = d.
Then, we have I1g(m) < Oy(m) forallm € Z.

Proof. The proof is by induction on the pair (m,d). We show the base case for pairs (m,0) and (0,d). In
the inductive step, we show the lemma holds for any m,d with m + d = k for some constant k assuming
that it holds for all m,d with m +d < k.

(a) Base case. For any pair (m,0) and (0,d), we have ®y(m) = ®;(0) = 1. When VC-dimension for
hypothesis set His d =0, it means 1 < |Hy| <sup, .o |Hx| <2and hence ITy (1) =1 < 1. This implies
that |[Hy| = 1 for all points x € X, which implies that all hypotheses I € H are a single constant. It
follows that ITy (m) = sup,cqom |[Hy| = 1 for all m > 1. If m = 0, then I (0) = sup, . |Hx| =0 < 1.

(b) Inductive case. Consider a pair (m,d) such that VC-dim(H) = d, and we assume that the induc-
tive hypothesis holds true for (m —1,d — 1) and (m — 1,d). Let x € X" be a sample with |H| =
1y (m) dichotomies. For each y € Hy, we find some h¥ € H such that h% = y and define G £
{W € H:yeH} CH and hence VC-dim(G) < VC-dim(H) = d. Consider the subsample x’ =
(x2,...,%n) and the corresponding dichotomy set Hy = {hy:h€ H} = {g: ¢ € G}.Foreachy' €

H,» CY"~1 there exists a gyl € G such that gz : =y, and we define
G'2{g/ y eHy}, G22G\ Gl

For each g% € G there exists a unique g' € G! such that ¢!, = ¢2, and g'(x1) # g*(x2).
(i) We observe that VC-dim(G!) < VC-dim(G) < d and hence |G}| < I (m — 1) < @y(m — 1).
(ii) Further, if G? shatters (x,...,x,) then G shatters (x1,...,x4) since for each ¢> € G? there exists
¢! € G; = G\ G' such that g'(x;) # ¢%(x1) and hence VC-dim(G?) < VC-dim(G) —1<d — 1.
It follows that |G?| <T1ga(m —1) < ®y_q(m —1).
Combining the two results and the fact that Iy (m) = |Hy| = |G| = (m) <
O

Q;(m—1) + D1 (m—1) = Dy(m).

Corollary 2.7. Let H be a hypothesis set with VC-dim(H) = d, then I1y(m) < (%)d =0(m?), forall m > d.

Remark 8. The growth function only exhibits two types of behavior,
(i) either VC-dim(H) = d < oo, in which case Iy (m) = O(m?),
(i) or VC-dim(H) = oo, in which case [Ty (m) = 2™ for all m € IN.

Corollary 2.8 (VC-dimension generalization bounds). Consider hypothesis set H C Y~ for binary labels
Y £ {—1,1} with VC-dimension d. Then, for any § > 0

P(ﬂ{ \/1 = \/1;11n(15})>1—5.
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Remark 9. With high probability, we observe the following for the generalization risk R().

(i) Generalization risk is of the form R(1) < R(h) + O ( W) , signifying the importance of the

ratio 7.
d
(if) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk

can be obtained as
N 8 2em 4

3 Margin theory
We present generalization bounds for SVM algorithms based on the notion of margin.

Definition 3.1 (Affine hypothesis set). Consider binary label set Y £ {—1,1}, input space X C RY, a
labeled sample z € (X x Y)™, and define an affine hypothesis set

Hé{x»—><w,x>+b:welRN,b€]R}QIRX.

Definition 3.2 (Margin). The geometric margin p(z;) of example i € [m] with respect to an affine hy-
pothesis 1’ € H is its distance to the hyperplane E,,;, = {x € RN : (w,x) + b= 0}. That is,

loll - wl]

p(zi) = vt (x;)  yi((w,x;) +b) .

The margin of an affine classifier ¥ € H for a labeled sample z € (X x Y)™ is the minimum margin
over the points in the sample, i.e. p = min{p(z;) :i € [m]}.

Corollary 3.3. Forany 6 >0and H= {x — (w,x) +b:w € RN,b € R}, we have

P<hQH{R(h) < R(h) + \/Z(Nm+ D, (Ne”; 5+ ;711“(15}) >1-0.

Proof. Recall that the VC-dimension of the family of hyperplanes or linear hypotheses in RV is N + 1.
The result follows from the application of corollary to Sauer’s lemma to generalization bound for this
hypothesis set. O

Remark 10. When the dimension of the feature space N is large compared to the sample size m, this
bound is uninformative.
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