
Lecture-11: Growth functions and VC-dimension

1 Growth function

Rademacher complexity can be bounded in terms of the growth function.

Definition 1.1 (Dichotomy). A dichotomy of an unlabeled sample x ∈Xm using a hypothesis h ∈ H ⊆ YX

is the generated label sequence hx ≜ (h(x1), . . . , h(xm)) ∈ Ym. For a hypothesis set H ⊆ YX, the set of
dichotomies of sample x ∈ Xm, is the set of m-length label sequences Hx ≜ {hx : h ∈ H} ⊆ Ym.

Definition 1.2 (Growth function). For a hypothesis set H, the growth function ΠH : Z+ → Z+ is defined
as ΠH(m)≜ maxx∈Xm |Hx| = maxx∈Xm |{hx : h ∈ H}| .

Remark 1. Growth function is a purely combinatorial measure, and the following holds true for it.
(a) It is the maximum number of distinct ways in which m points can be classified using hypotheses in

H. Note that it is maximum and not supremum, since there are finitely many elements in each set
Hx. Specifically, |Hx|⩽ |Y|m.

(b) It is a measure of richness of the hypothesis set H.
(c) It doesn’t depend on the unknown distribution D, unlike Rademacher complexity.

Lemma 1.3 (Massart). Consider a finite set A ⊂ Rm with r ≜ maxu∈A ∥u∥2, and independent Rademacher
random vector σ : Ω → {−1,1}m. Then, we have E[ 1

m supu∈A ⟨σ,u⟩]⩽ r
m

√
2ln |A|.

Proof. Fix t > 0. Applying Jensen’s inequality to the convex function f (x) = etx, rearranging terms,
upper bounding the supremum of positive numbers by its sum, and linearity of expectation, we obtain

etEsupx∈A⟨σ,x⟩ ⩽ Eetsupx∈A⟨σ,x⟩ = Esup
x∈A

et⟨σ,x⟩ ⩽ E ∑
x∈A

et⟨σ,x⟩ = ∑
x∈A

Eet⟨σ,x⟩.

From the independence of Rademacher random vector σ, the application of Hoeffding lemma for each
product term where −t |xi|⩽ tσixi ⩽ t |xi| for all i ∈ [m], and the definition of r, we get

etEsupx∈A⟨σ,x⟩ ⩽ ∑
x∈A

E[et⟨σ,x⟩]⩽ ∑
x∈A

m

∏
i=1

E[etσixi ]⩽ ∑
x∈A

m

∏
i=1

e
4t2x2

i
8 ⩽ ∑

x∈A
e

t2
2 ∥x∥2

2 ⩽ |A| e
t2r2

2 .

Taking the natural log of both sides and dividing by t, we get Esupx∈A ⟨σ, x⟩ ⩽ 1
t ln |A| + tr2

2 for all
t > 0. It follows that Esupx∈A ⟨σ, x⟩ ⩽ inft>0

1
t ln |A|+ tr2

2 and the upper bound is minimized for t∗ ≜
1
r

√
2ln |A|. We get the result by dividing the both sides of this minimized upper bound by m.

Corollary 1.4. Consider hypothesis set H ⊂ YX for binary labels Y≜ {−1,1}, then Rm(H)⩽
√

2
m lnΠH(m).

Proof. We fix an unlabeled sample x ∈ Xm and hypothesis h ∈ H. Recall that hx ≜ (h(x1), . . . , h(xm))) ∈
Ym and we denote the dichotomy set by Hx ≜ {hx : h ∈ H} ⊆ Ym. Any vector y ∈ Ym has norm ∥y∥2 =√

m. In particular, any vector hx ∈ Hx has norm
√

m. Applying Massart’s lemma to the finite set Hx,

Rm(H) = ExR̂x(H) = ExEσ sup
h∈H

1
m
⟨σ, hx⟩ = ExEσ sup

u∈Hx

1
m
⟨σ,u⟩⩽ E

√
2
m

ln |Hx|.

The result follows from the monotonicity of log and the definition of growth function.

Corollary 1.5 (Growth function generalization bound). Consider hypothesis set H ⊂ YX for binary labels
Y≜ {−1,1}. Then, for any δ > 0

P
( ⋂

h∈H

{
R(h)⩽ R̂(h) +

√
2
m

lnΠH(m) +

√
1

2m
ln

1
δ

})
⩾ 1 − δ.
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Remark 2. Growth function bounds can be also derived directly without using Rademacher complex-

ity bounds. The resulting bound is P
(
∪h∈H

{∣∣R(h)− R̂(h)
∣∣ > ϵ

})
⩽ 4ΠH(2m)e−mϵ2/8. Taking δ ⩾

4ΠH(2m)e−mϵ2/8, we get
√

8
m ln 4

δ +
8
m lnΠH(2m)⩽ ϵ. That is, the generalization bound is

P
( ⋂

h∈H

{
R(h)⩽ R̂(h) +

√
8
m

(
ln

4
δ
+ lnΠH(2m)

)})
⩾ 1 − δ.

The generalization bound obtained from this bound differs from Corollary 1.5 only in constants.

Remark 3. The computation of the growth function may not be always convenient since, by definition,
it requires computing ΠH(m) for all m ∈ N.

2 Vapnik-Chervonenkis (VC) dimension

The VC-dimension is also a purely combinatorial notion but it is often easier to compute than the growth
function or the Rademacher Complexity. We will consider the target space Y≜ {−1,1} in the following.

Definition 2.1 (Shattering). An unlabeled sample x ∈ Xm is said to be shattered by a hypothesis set
H ⊆ YX when this set realizes all possible dichotomies of x, that is when |Hx| = |Y|m.

Definition 2.2 (VC-dimension). The VC-dimension of a hypothesis set H is the size of the largest unla-
beled sample that can be fully shattered by H. That is, VC-dim(H)≜ max{m ∈ Z+ : ΠH(m) = 2m} .

Remark 4. By definition VC-dim(H) = d implies that there exists an unlabeled sample x ∈ Xd of size d
that can be fully shattered, i.e. |Hx| = |Y|d. This does not imply that all unlabeled samples of size d or
less are fully shattered. In fact, this is typically not the case.

Remark 5. We observe that if a sample x ∈ Xm+1 can be fully shattered, i.e. |Hx| = |Y|m+1. That is, for
each y ∈ Ym+1 there exists hy ∈ H such that hy

x = y. We take x′ ∈ Xm such that x′i = xi for i ∈ [m], then
hy

x′ = (y1, . . . ,ym). That is, a subset of size m can also be fully shattered. It follows that if no unlabeled
samples of size m are fully shattered, then no unlabeled samples of size m + 1 can be fully shattered.

Remark 6. To compute the VC-dimension of a hypothesis set, we will typically show a lower bound for
its value and then a matching upper bound. To show a lower bound d for VC-dim(H), it suffices to
show that a sample x ∈ Xd can be shattered by hypothesis set H. To show an upper bound, we need to
prove that no sample x ∈Xd+1 can be shattered by hypothesis set H. This step is typically more difficult.

Example 2.3 (Intervals on the real line). For binary labels Y ≜ {−1,1} and input space X = R,
consider a hypothesis set H ⊆ YR of separating intervals on real line R defined as

H ≜
{

x 7→ 1[a,b](x)− 1[a,b]c(x) : a,b ∈ R
}
⊆ YR.

We observe that for d = 2, possible dichotomies are Yd = {(−1,−1), (−1,1), (1,−1), (1,1)}. Let
x ∈ Rd, then we can find a,b ∈ R such that corresponding ha,b ∈ H achieves any dichotomy in
Yd. To show this, we can assume that x1 < x2 without any loss of generality, and observe that for
any ha,b ∈ H

ha,b
x =


(−1,−1), x2 < a or x1 > b or x1 < a < b < x2,
(−1,1), x1 < a < x2 < b,
(1,−1), a < x1 < b < x2,
(1,1), a < x1 < x2 < b.

Further, for any sample x ∈ R3 such that x1 < x2 < x3 there is no a,b ∈ R such that ha,b
x = (1,−1,1).

That is, no set of three points can be shattered, and hence VC-dim(H) = 2.

Remark 7. The VC-dimension for hyperplanes in any vector space of dimension d < ∞ can be shown to
be at most d + 1.

2



Definition 2.4. We define Φd : Z+ → Z+ as Φd(m)≜ ∑d
i=0 (

m
i ) for each m,d ∈ Z+.

Lemma 2.5. For any d,m ∈ Z+ the following properties hold for Φd.
(a) Φ0(m) = Φd(0) = 1.
(b) Φd−1(m − 1) + Φd(m − 1) = Φd(m).
(c) Φd(m)⩽ (em/d)d for m ⩾ d.

Proof. Recall that Φd(m) = ∑d
i=0 (

m
i ) for each m,d ∈ Z+.

(a) Follows from the definition.
(b) Recall that (m−1

i−1 ) + (m−1
i ) = (m

i )(
i
m + m−i

m ) = (m
i ). Summing both sides over i ∈ {0, . . . ,d} and from

the definition of Φd(m), we obtain the result.
(c) For m ⩾ d and 0 ⩽ i ⩽ d, we have (m

d )
d−i ⩾ 1. Therefore,

Φd(m) =
d

∑
i=0

(
m
i

)
⩽

d

∑
i=0

(
m
i

)(m
d

)d−i
=

(m
d

)d d

∑
i=0

(
m
i

)(
d
m

)i
⩽

(m
d

)d m

∑
i=0

(
m
i

)(
d
m

)i
.

From Binomial theorem, we get ∑m
i=0 (

m
i )
(

d
m

)i
=

(
1 + d

m

)m
. Since 1 + x ⩽ ex for all x ∈ R, we get(

1 + d
m

)m
⩽ ed, and hence the result follows.

Theorem 2.6 (Sauer). Consider hypothesis set H ⊆ YX for binary labels Y≜ {−1,1} with VC-dim(H) = d.
Then, we have ΠH(m)⩽ Φd(m) for all m ∈ Z+.

Proof. The proof is by induction on the pair (m,d). We show the base case for pairs (m,0) and (0,d). In
the inductive step, we show the lemma holds for any m,d with m + d = k for some constant k assuming
that it holds for all m,d with m + d < k.
(a) Base case. For any pair (m,0) and (0,d), we have Φ0(m) = Φd(0) = 1. When VC-dimension for

hypothesis set H is d = 0, it means 1⩽ |Hx|⩽ supx∈X |Hx|< 2 and hence ΠH(1) = 1⩽ 1. This implies
that |Hx| = 1 for all points x ∈ X, which implies that all hypotheses h ∈ H are a single constant. It
follows that ΠH(m) = supx∈Xm |Hx| = 1 for all m ⩾ 1. If m = 0, then ΠH(0) = supx∈∅ |Hx| = 0 ⩽ 1.

(b) Inductive case. Consider a pair (m,d) such that VC-dim(H) = d, and we assume that the induc-
tive hypothesis holds true for (m − 1,d − 1) and (m − 1,d). Let x ∈ Xm be a sample with |Hx| =
ΠH(m) dichotomies. For each y ∈ Hx, we find some hy ∈ H such that hy

x = y and define G ≜
{hy ∈ H : y ∈ Hx} ⊆ H and hence VC-dim(G) ⩽ VC-dim(H) = d. Consider the subsample x′ ≜
(x2, . . . , xm) and the corresponding dichotomy set Hx′ = {hx′ : h ∈ H} = {gx′ : g ∈ G} . For each y′ ∈
Hx′ ⊆ Ym−1, there exists a gy′ ∈ G such that gy′

x′ = y′, and we define

G1 ≜
{

gy′ : y′ ∈ Hx′
}

, G2 ≜ G \ G1.

For each g2 ∈ G there exists a unique g1 ∈ G1 such that g1
x′ = g2

x′ and g1(x1) ̸= g2(x2).
(i) We observe that VC-dim(G1)⩽ VC-dim(G)⩽ d and hence

∣∣G1
∣∣⩽ ΠG1(m − 1)⩽ Φd(m − 1).

(ii) Further, if G2 shatters (x2, . . . , xd) then G shatters (x1, . . . , xd) since for each g2 ∈ G2 there exists
g1 ∈ G1 = G \ G1 such that g1(x1) ̸= g2(x1) and hence VC-dim(G2)⩽ VC-dim(G)− 1 ⩽ d − 1.
It follows that

∣∣G2
∣∣⩽ ΠG2(m − 1)⩽ Φd−1(m − 1).

Combining the two results and the fact that ΠH(m) = |Hx|= |G|=
∣∣G1

∣∣+ ∣∣G2
∣∣, we obtain ΠH(m)⩽

Φd(m − 1) + Φd−1(m − 1) = Φd(m).

Corollary 2.7. Let H be a hypothesis set with VC-dim(H) = d, then ΠH(m)⩽
( em

d
)d

= O(md), for all m ⩾ d.

Remark 8. The growth function only exhibits two types of behavior,
(i) either VC-dim(H) = d < ∞, in which case ΠH(m) = O(md),

(ii) or VC-dim(H) = ∞, in which case ΠH(m) = 2m for all m ∈ N.

Corollary 2.8 (VC-dimension generalization bounds). Consider hypothesis set H ⊂ YX for binary labels
Y≜ {−1,1} with VC-dimension d. Then, for any δ > 0

P
( ⋂

h∈H

{
R(h)⩽ R̂(h) +

√
2d
m

ln
em
d

+

√
1

2m
ln

1
δ

})
⩾ 1 − δ.
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Remark 9. With high probability, we observe the following for the generalization risk R(h).

(i) Generalization risk is of the form R(h) ⩽ R̂(h) + O
(√

ln(m/d)
m/d

)
, signifying the importance of the

ratio m
d .

(ii) Without the intermediate step of Rademacher complexity, a direct bound on generalization risk
can be obtained as

R̂(h) +

√
8
m

(
d ln

2em
d

+ ln
4
δ

)
.

3 Margin theory

We present generalization bounds for SVM algorithms based on the notion of margin.

Definition 3.1 (Affine hypothesis set). Consider binary label set Y ≜ {−1,1}, input space X ⊆ RN , a
labeled sample z ∈ (X× Y)m, and define an affine hypothesis set

H ≜
{

x 7→ ⟨w, x⟩+ b : w ∈ RN ,b ∈ R
}
⊆ RX.

Definition 3.2 (Margin). The geometric margin ρ(zi) of example i ∈ [m] with respect to an affine hy-
pothesis hw,b ∈ H is its distance to the hyperplane Ew,b ≜

{
x ∈ RN : ⟨w, x⟩+ b = 0

}
. That is,

ρ(zi)≜
yihw,b(xi)

∥w∥ =
yi(⟨w, xi⟩+ b)

∥w∥ .

The margin of an affine classifier hw,b ∈ H for a labeled sample z ∈ (X× Y)m is the minimum margin
over the points in the sample, i.e. ρ ≜ min{ρ(zi) : i ∈ [m]} .

Corollary 3.3. For any δ > 0 and H ≜
{

x 7→ ⟨w, x⟩+ b : w ∈ RN ,b ∈ R
}

, we have

P
( ⋂

h∈H

{
R(h)⩽ R̂(h) +

√
2(N + 1)

m
ln

em
(N + 1)

+

√
1

2m
ln

1
δ

})
⩾ 1 − δ.

Proof. Recall that the VC-dimension of the family of hyperplanes or linear hypotheses in RN is N + 1.
The result follows from the application of corollary to Sauer’s lemma to generalization bound for this
hypothesis set.

Remark 10. When the dimension of the feature space N is large compared to the sample size m, this
bound is uninformative.
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