Lecture-12: Complexity bounds for separating hyperplanes

1 Complexity bounds for separating hyperplanes

We will find tighter upper bounds on the Rademacher complexity and VC-dimension on the hypothesis
class of separating hyperplanes and its analog in higher dimensions using kernel methods.

1.1 Separating hyperplanes based hypotheses

Theorem 1.1 (VC-dimension for hypothesis set of canonical separating hyperplanes). Consider an
unlabeled sample x € X™ such that suple[m |lxi|| < 7 and the hypothesis set of canonical hyperplanes H =

{x s sign({w,x)) : minyeqem |(w, x)| =1, ||w|| < A}. Then, VC-dim(H) < r?A2.

Proof. Let VC-dim(H) = d, and unlabeled sample x € X that can be fully shattered, i.e. |Hy| = 2%. Then,

for any label sequence y € {—1,1}d, there exists 1 € H such that h% = y. That is, there exists w € RN
such that y;((w, x;)) > 1 for all i € [d]. Summing up these inequalities for each i € [d], from the linearity
of inner product, Cauchy-Schwartz inequality, and hypothesis |w|| < A, we get
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Since this inequality holds for any label sequence y € {—1,1}d, it also holds on expectation over y €
{-11 }d drawn i.i.d. according to a uniform distribution. From the independence assumption, we have
Ely;y;] = E[y;|E[y;] for i # j. Thus, since the distribution is uniform, E[y;y;] = 1;;_;,. Taking expecta-
tion and applying Jensen’s inequality to convex square function, we get
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Remark 1. When the training data is linearly separable, the maximum-margin canonical hyperplane
with ||w|| = 1/p can be plugged into above theorem. In this case, A = 1/p, and the upper bound can be
rewritten as 7% /2. Note that the choice of A must be made before receiving the sample x € X“.

Theorem 1.2 (Rademacher complexity for separating hyperplanes). Consider unlabeled sample xeX™
such that sup;c(,, || ;|| < rand the hypothesis set of hyperplanes H 2 {x = (w,x) 1 |[w|| < A}. Then, Ry (H) <
1
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Proof. From the definition of empirical Rademacher complexity, the linearity of inner products, the
application of Cauchy-Schwarz inequality to inner products, the application of Jensen’s inequality to
convex square function, and i.i.d. uniform nature of Rademacher vector o, we get
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Lemma 1.3. Consider a binary label set Y = {—1,1}, input space X C R?, unlabeled sample x € X, hypothesis
set HCRY, and b € R. Defineb+ H= {b+h:hc H}, then Ry (H) = Ry (H).

:R,x(H) = %IE{] < é]E:g A.
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Proof. From the definition of empirical Rademacher complexity and the fact that Rademacher vector o
is i.i.d. zero mean, we get
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1.2 Kernel based hypotheses

Consider an input space X C R, binary label set Y = {—1,1}, a PDS kernel k : X x X — R, associated
RKHS H, and a hypothesis set of the form H = {h € H : ||| < A} for some A > 0. Recall that the

feature map ® : X — H for the associated RKHS is defined as ®(x) = ey = k(x,-) for all x € X. Further
any w € H has the form x — (w,ex) = (w,P(x)) due to the reproducing property. For any w € H, we
have ||w|| gy < A.

Theorem 1.4 (Rademcaher complexity of kernel-based hypotheses). Consider a PDS kernel k: X x X —
IR, associated RKHS H and feature mapping @ : X — H, an unlabeled sample x € X™ such that sup;c . k(xi,x;) <
12, and a hypothesis set H = {x — (w,®(x)) : ||w||;; < A} € H for some A > 0. Denoting the kernel matrix
K e R™*™ gssociated with kernel k and unlabeled sample x, defined as Kij £ k(xz-,xj), we observe that
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Proof. From the definition of empirical Rademacher complexity, the linearity of inner products, the
application of Cauchy-Schwarz inequality to inner products, the application of Jensen’s inequality to
convex square function, and 7.i.d. uniform nature of Rademacher vector o, we get
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The result follows since ||D(x;) ||§{ =k(xj,x;) and Y1 1 k(x;,x;) = trK. O

Remark 2. Trace of the kernel matrix is an important quantity for controlling the complexity of hypoth-
esis sets based on kernels.

A Talagrand’s inequality

Lemma A.1 (Talagrand). Let ® : IR — R be an ¢-Lipschitz function. Then, for any hypothesis set H of real-
valued functions, we have A A
Rx(®oH) < {Ry(H).

Proof. The empirical Rademacher complexity for an unlabeled sample x € X", is

Re(®oH) = l1}3(, E

sup i (® ><xi>] = E

heH i=

sup ity —1(h) + O (P o 1) (xm) | 0’”1] ] ,
heH

where 1,1 (1) £ "' 0;(® o h) (x;) for any hypothesis h € H. Fix € > 0. By the definition of supremum,
there exist h1,hy € H such that

Um—1(h1) + (@ ohy)(xm) = (1—€) 2115 [Um—1(h) + (Do h)(xm)],

-1 (12) = (@ 12) (xin) > (1 =€) suplat 1) — (@ 0 ) ().

Thus for any € > 0, by the definition of [E,, , we have

(1-¢e)E Isugumfl(h) + o (Poh)(xm) | < % [m—1(h1) + (P ohy)(xm)] + % [Um—1(h2) — (Do ha)(xm)].



From the ¢-Lipschitz property of ®, we get (P o hy) (xmm) — (P ohy)(xp) < L |h1(xp) — ho(xm)|. Defining
s = sign(hy(xm) — ha(xm)), we get
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Since the inequality holds for all € > 0, we have
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Proceeding in the same way for all other 0;,i € [m — 1] proves the lemma. O
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