
Lecture-14: Complexity theory based lower bounds

1 Lower bounds

So far we presented several upper bounds on the generalization error. In this lecture, we provide lower
bounds on the generalization error of any learning algorithm in terms of the VC-dimension of the hy-
pothesis set used. These lower bounds are shown by finding for any algorithm a bad distribution. In
the context of the following proofs, first a lower bound is given on the expected error over the param-
eters defining the distributions. From that, the lower bound is shown to hold for at least one set of
parameters, that is one distribution.

Definition 1.1. Consider an input space X, binary label space Y ≜ {0,1}, a hypothesis set H ⊆ YX,
a concept c ∈ YX, and loss function ℓ : Y× Y → {0,1} defined as ℓ(y,y′) ≜ 1{y ̸=y′} for all y,y′ ∈ Y. Let
hx ∈ H be a hypothesis returned by a learning algorithm A for any unlabeled sample x ∈Xm. We assume
that the test and training examples are sampled i.i.d. from the same distribution D ∈ M(X), then the
generalization risk under algorithm A is defined for each hx ∈ H, f ∈ YX and distribution D ∈M(X),

RD(hx, f )≜ E[ℓ(hx(X), f (X)) | x] = EX∼D1{hx(X) ̸= f (X)}.

Theorem 1.2 (Lower bound, realizable case). Consider an input space X, binary labels Y ≜ {0,1}, and
hypothesis set H ⊆ YX with d ≜ VC-dim(H) > 1. Then, for any unlabeled finite sample X : Ω ∈ Xm for m ⩾ 1
and any learning algorithm A that returns hypothesis hX ∈ H, there exists a distribution D ∈M(X) and a target
function f ∈ H such that

PX∼Dm

{
RD(hX , f ) >

d − 1
32m

}
⩾

1
100

.

Proof. We will show this in steps.
(a) Construction of distribution D ∈M(X). Since VC-dim(H) = d, there exists a sample x̄ ∈ Xd that is

shattered by H. We observe that all elements of this sequence are distinct and we can equivalently
represent it by the set X̄ ≜ {x̄1, . . . , x̄d} ⊆ X. Further, we have Hx̄ ≜ {hx̄ : h ∈ H} = Yd. That is, for
any label sequence y ∈ Yd, there exists hy ∈ H such that hy

x̄ = y or equivalently hy(x̄i) = yi for each
i ∈ [d]. For any ϵ > 0, we choose D ∈M(X) such that the supp(D) = X̄ and so that one point x̄d has
very high probability (1 − 8ϵ), with the rest of the probability mass distributed uniformly among
the other points, i.e. for any observation W : Ω → X with distribution D

D{W = x̄d} = 1 − 8ϵ, D{W = x̄i} =
8ϵ

d − 1
for all i ∈ [d − 1].

(b) Upper bounding risk under distribution D. For any random sample X : Ω → Xm of size m ⩾ 1
generated i.i.d. for this distribution D, we have D(∩m

i=1 {Xi ̸= x̄d}) = (8ϵ)m, i.e. most samples would
contain x̄d. Let hX be the hypothesis returned by algorithm A, then we can assume without loss of
generality that hX makes no error on x̄d. Thus, from the linearity of expectation,

RD(hX , f ) = EW∼D1{hX(W) ̸= f (W)} = ∑
w∈X̄

1{hX(w) ̸= f (w)}D{W = w}⩽ ∑
w∈X̄\{x̄d}

D{W = w} = 8ϵ.

(c) Lower bound on generalized risk under D. Recall that 1 = ∑x∈X̄1{W=x} almost surely for any
random variable W : Ω → X sampled under D ∈M(X). Thus, we can define

I(x)≜ {i ∈ [m] : x ∈ {x̄1, . . . , x̄d−1}} , S̄(x)≜ {xi : i ∈ I(x)} , S≜ {x ∈ Xm : |I(x)|⩽ (d − 1)/2} .

We observe that S̄(x)⊆ X̄ \ {x̄d}, and the best that any algorithm A can do is return a hypothesis hX

that makes no error on training set S̄(X) ∪ {x̄d}, i.e. hX(w) = c(w) for all w ∈ S̄(X) ∪ {x̄d}. That is,

1{hX(W) ̸=c(W)} = ∑
w∈X̄

1{W=w}1{hX(w) ̸=c(w)} ⩾ ∑
w∈X̄\(S̄(X)∪{x̄d})

1{W=w}1{hX(w) ̸=c(w)}. (1)
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We fix a sample x ∈ S, and consider the uniform distribution U ∈M(Hx̄). Applying expectation on
both sides of (1), using the linearity of expectation, exchanging the order of expectations for random
variables with finite support, non-negativity of indicator functions, and the definition of D, we get

EhY∼U RD(hX , hY) = EhY∼UEW∼D1{hX(W) ̸=hY(W)} ⩾ ∑
w∈X̄\(S̄(X)∪{x̄d})

EhY∼U [1{hX(w) ̸=hY(w)}]Dw

=
1
2 ∑

w∈X̄\(S̄(X)∪{x̄d})
Dw ⩾

1
2
(d − 1)

2
8ϵ

(d − 1)
= 2ϵ.

That is, since x̄ is shattered, algorithm A can essentially do no better than tossing a coin when
determining the label of a point x̄i not falling in the training set S̄(X).

(d) Construction of a target function f ∈ H. Since the above equation holds for all samples x ∈ S, it
also holds in expectation over all X : Ω → S, i.e. EX∈SEhY∼U [RD(hX , hY)]⩾ 2ϵ. By Fubini’s theorem,
the order of expectations can be exchanged, and thus EhY∼U

[
EX∈S[RD(hX , hY)]

]
⩾ 2ϵ. This implies

that EX∈S[RD(hX , f0)]⩾ 2ϵ for at least one labeling f0 ∈ H.
(e) Lower bound on PX∼Dm

{
RD(hX , f0)⩾ ϵ

}
. Decomposing EX∈S[RD(hX , f0)] into two parts, using

upper bound RD(hX , f0)⩽ 8ϵ from part (b), and upper bounding an indicator by unity, we obtain

2ϵ⩽EX∈SRD(hX , f0) =E[RD(hX , f0)(1{RD(hX , f0)⩾ϵ}+1{RD(hX , f0)<ϵ})]⩽ 7ϵPX∈S
{

RD(hX , f0)⩾ ϵ
}
+ ϵ.

Rearranging terms, we obtain PX∈S
{

RD(hX , f0)⩾ ϵ
}
⩾ 1/7. Thus, the probability over all samples

X ∈ Xm can be lower bounded as

PX∼Dm

{
RD(hX , f0)⩾ ϵ

}
⩾ PX∈S

{
RD(hX , f0)⩾ ϵ

}
PX∼Dm {X ∈ S}⩾ 1

7
PX∼Dm {X ∈ S} .

(f) Lower bound on PX∼Dm {X ∈ S}. For any sample X ∈Xm, we have
∣∣S̄(X)

∣∣= |I(X)|= ∑m
i=11{Xi ̸=x̄d}

almost surely under distribution D. Since Dx̄d = 1− 8ϵ, applying the multiplicative Chernoff bound
for γ = 1 and ϵ = (d − 1)/32m, and using the fact that d ⩾ 2, we obtain an upper bound on the
probability that more than (d − 1)/2 points are drawn in a sample of size m

1− PX∼Dm {X ∈ S}= P
{∣∣S̄(X)

∣∣ > (d − 1)/2
}
= P

{
1
m

m

∑
i=1

1{Xi ̸=x̄d} ⩾ 8ϵ(1 + γ)

}
⩽ e−8ϵm γ2

3 ⩽ e−1/12.

We observe that e−1/12 ⩽ 1 − 7δ for δ ⩽ .01, and hence PX∼Dm {X ∈ S}⩾ 7δ.
Hence, we constructed a distribution D and hypothesis f0 ∈ H such that PX∼Dm

{
RD(hX , f0)⩾ ϵ

}
⩾

δ.

Remark 1. The theorem shows that for any algorithm A, there exists a bad distribution over X and a
target function f for which the error of the hypothesis returned by algorithm A is a constant times
d/m with some constant probability. This further demonstrates the key role played by the VC-dim in
learning. The result implies in particular that PAC-learning in the realizable case is not possible when
the VC-dimension is infinite.

Remark 2. Note that the proof shows a stronger result than the statement of the theorem: the distribution
D is selected independently of the algorithm A.

A Concentration inequalities

Theorem A.1 (Sanov). Consider i.i.d. random vector X : Ω → [0,1]m with common distribution D and mean
p. Then, for any q ∈ [0,1], the following inequality holds for p̂ = 1

m ∑m
i=1 Xi,

P{ p̂ ⩾ q}⩽ e−mD(q∥p),

where D(q∥p)≜ q log q
p + (1 − q) log (1−q)

(1−p) is the binary relative entropy of p and q.

Proof. Let t > 0. By convexity of the function x 7→ etx, the following inequality holds for all x ∈ [0,1],

etx = et[(1−x)0+x1] ⩽ 1 − x + xet.
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In view of that, for any t > 0, we can write

P{ p̂ ⩾ q}= P
{

etmp̂ ⩾ etmq
}
⩽ e−tmqEetmp̂ = e−tmq

m

∏
i=1

EetXi ⩽ e−tmq
m

∏
i=1

E(1−Xi +Xiet) = e−tmq(1− p+ pet)m.

Now, the function f : t 7→ e−tq(1− p+ pet) = (1− p)e−tq + pet(1−q) reaches its minimum at t∗≜ log q(1−p)
p(1−q) .

Plugging in this value of t in the previous inequality, we obtain

P{ p̂ ⩾ q}⩽ inf
t>0

(
(1 − p)e−tq + pet(1−q)

)m
= ((1 − p)e−t∗q + pet∗(1−q))

)m
= (1 − p)

p(1 − q)
q(1 − p)

q
+ p

Plugging in this value of t in the inequality above yields P{ p̂ ⩾ q}⩽ e−mD(q∥p).

Remark 3. Note that for any 0 < ϵ ⩽ 1 − p, with the choice q = p + ϵ, the theorem implies

P{ p̂ ⩾ p + ϵ}⩽ e−mD(p+ϵ∥p).

This is a finer bound than Hoeffding’s inequality since, by Pinsker’s inequality D(p + ϵ∥p)⩾ 1
2 (2ϵ)2 =

2ϵ2. Similarly, we can derive a symmetric bound by applying the theorem to the random variables
Yi ≜ 1 − Xi. Then, for any 0 < ϵ ⩽ p, with the choice q = p − ϵ, the theorem implies

P{ p̂ ⩽ p − ϵ}⩽ e−mD(p−ϵ∥p).

Theorem A.2 (Multiplicative Chernoff bounds). Consider an i.i.d. random vector X : Ω → Xm with un-
known distribution D, mean p and support X ⊆ [0,1]. Then, for any γ ∈ [0, 1

p − 1], the following inequality

holds for p̂ = 1
m ∑m

i=1 Xi,

P{ p̂ ⩾ (1 + γ)p}⩽ e−mp γ2
3 , P{ p̂ ⩽ (1 − γ)p}⩽ e−mp γ2

2 .

Proof. The proof consists of deriving in each case a finer lower bound for the binary relative entropy
than Pinsker’s inequality. Using the inequalities log(1 + x)⩾ x

1+ x
2

and log(1 + x) < x, we can write

−D((1+γ)p∥p)⩽ (1+γ)p
−γ

1 + γ/2
+(1− p−γp)

γp
1 − p − γp

= γp
(

1− 1 + γ

1 + γ/2

)
=− γ2 p

2 + γ
⩽−γ2 p

3
.

Similarly, using the inequalities (1 − x) log(1 − x)⩾−x + x2

2 valid for x ∈ (0,1) and log(1 − x) < −x,

−D((1 − γ)p∥p)⩽ p(γ − γ2/2)− γp = −γ2 p
2

.
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