
Lecture-15: Statistical decision theory

1 Setting

Definition 1.1. Consider an observation space X and parameter space Θ. The set of all probability distri-
butions on the observation space is defined as M(X)≜

{
P ∈ [0,1]σ(X) : P satisfies probability axioms

}
.

Let Pθ ∈M(X) for each θ ∈ Θ. A statistical model refers to a collection

P(Θ)≜ {Pθ ∈M(X) : θ ∈ Θ} . (1)

Remark 1. Without loss of generality, all statistical models can be expressed in the parametric form (1).

Definition 1.2. A statistical model is called parametric if Θ is a finite-dimensional Euclidean space so
that each distribution is specified by finitely many parameters, and nonparametric if Θ is an infinite-
dimensional space.

Assumption 1.3. Let X,Y,Θ be the observation, output, and parameter spaces respectively. Let estimand
map be T : Θ → Y and P(Θ) be a statistical model parametrized over parameter space Θ. The observa-
tion random variable X : Ω → X is assumed to be generated by distribution Pθ ∈ P(Θ) and the goal is
to estimate T(θ) based on the observation X.

Example 1.4. Some examples of estimand T(θ) are θ,1{θ>0}, sign(θ), or ∥θ∥p for some p ⩾ 1. If

Θ ⊆ Rd, then an interesting estimand is T(θ) ≜ max{θi : i ∈ [d]}. If Θ ⊆ Rd×d, then an interesting
estimand is T(θ)≜ max{λi : i ∈ [d]} where (λ1, . . . ,λd) are eigenvalues of θ.

Example 1.5 (Binary classification). Let X ≜ Rd,Θ = Y ≜ {−1,1}, estimand T(θ) = θ, and an in-
dependent labeled training sample Z ∈ (X× Y)m. Defining Iθ ≜ {i ∈ [m] : Yi = θ}, we observe that
(Iθ : θ ∈ Θ) partitions [m]. For any parameter θ ∈ Θ, we define random vector XIθ

≜ (Xi : i ∈ Iθ),
which is i.i.d. with a common distribution Pθ . We note that this assumption is different than assum-
ing x ∈ Xm is i.i.d.. However, assuming a prior distribution π ∈M(Θ) we can define a distribution
D ∈ M(X) for each B ∈ σ(X), as D(B) ≜ Eθ∼π Pθ(B) =

∫
θ∈Θ dπ(θ)Pθ(B). This assumption ensures

that X ∈ Xm is i.i.d. with common .

Definition 1.6. Let Y′ be the prediction space which need not be same as the output space Y. An
estimator is a random map T̂ : Ω → (Y′)X that provides a random estimate T̂(W) for T(θ) ∈ Y′ given any
observation W ∈ X. We can denote a random estimator by a probability distribution PT̂(W)|W ∈M(Y′).

Assumption 1.7. We assume that the random estimator T̂ is a map such that T̂(W) conditioned on
observation W is a random variable independent of everything else and models external randomness.

Remark 2. A deterministic estimator T̂(W) is constant for any given observation W, i.e. PT̂(W)|W = 1.

Remark 3. Recall the previous setup where any sample W : Ω →X is i.i.d. with an unknown distribution
D ∈M(X) and label Y = c(W) for a concept c ∈ YX. We compare the previous setup to this setup where
observation W is sampled from distribution Pθ ∈ M(X) under true parameter θ ∈ Θ, and the the joint
distribution of label Y ≜ T(θ) and observation W is defined as dPW,Y(w,y) = dπ(θ)dPθ(w)1{θ∈T−1(y)}
such that the dependance of the label Y on observation W is given as

dPY|W=w(y) =

∫
θ∈T−1(y) dπ(θ)dPθ(w)∫

θ∈Θ dπ(θ)dPθ(w)
.
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Consider the case when w = f (θ) for a deterministic and invertible map f : Θ → X, then Pθ(w) =
1{w= f (θ)} and each observation w comes from a deterministic parameter f−1(w) ∈ Θ and hence the
label y = T(θ) = (T ◦ f−1)(w) and the concept c ≜ T ◦ f−1 : X→ Y in this case.

Example 1.8. T̂ may be a confidence interval that aims to contain the scalar T(θ).

Example 1.9 (Binary classification). We take prediction space Y′ = Y, observation space X⊆Rd, and
define linear estimator T̂ : Ω → YX as T̂(X) ≜ sign ⟨w, X⟩ for some w ∈ Rd. This is a deterministic
estimator and not depending on the external randomness.

Definition 1.10. To measure the quality of an estimator T̂, we introduce a loss function ℓ : Y× Y′ → R

such that (T(θ), T̂(X)) 7→ ℓ(T(θ), T̂(X)) is the loss incurred by map T̂ in estimating T at parameter θ by
observing X.

Remark 4. Since we are dealing with loss, all the negative or converse results are lower bounds and all
the positive or achievable results are upper bounds. Note that X is a random variable, so is the estimate
T̂(X) and the loss ℓ(T(θ), T̂(X)) even for a deterministic estimator.

Definition 1.11. The risk of estimator T̂ at a parameter θ under loss ℓ is defined as

Rθ(T, T̂)≜E[ℓ(T(θ), T̂(X)) | θ] =E[E[ℓ(T(θ), T̂(X)) | X,θ] | θ] =
∫

dPθ(x)
∫

y′∈Y′
ℓ(T(θ),y′)dPT̂(X)|X=x(y

′).

Example 1.12 (Binary classification for general parameter space). We take the following parameter
space, estimand, prediction space, and loss functions for Θ0 ∩ Θ1 = ∅,

Θ ≜ Θ0 ∪ Θ1, T(θ)≜ 1Θ1(θ), Y′ ≜ {0,1} , ℓ(T(θ), T̂(x))≜ 1{T(θ) ̸=T̂(x)}.

Denoting the random set XT̂(x) ≜
{

x ∈ X : T̂(x) = T(θ)
}

given observation X = x, we can write the
expected risk as the probability of error

Rθ(T, T̂) = E[1{T(θ) ̸=T̂(X)} | θ] = Pθ

{
X /∈ XT̂(X)

}
.

Example 1.13 (Confidence interval estimation). Consider the problem of inference where the goal
is to output a confidence interval or region which covers the true parameter with high probability.
In this case, Y= Θ = X⊆ Rd, estimand T(θ) = θ, prediction space Y′ ≜ P(Θ) and random estimator
T̂ : Ω → (Y′)X. Random estimate θ̂ ≜ T̂(x) is a subset of parameter Θ for observation X = x and
external randomness. The loss function ℓ : Y× Y′ is defined as ℓ(θ, θ̂)≜ 1Θ\θ̂(θ) + λ

∣∣θ̂∣∣ where
∣∣θ̂∣∣ is

the volume of region θ̂ and λ > 0 is some regularization parameter.

Remark 5 (Randomized versus deterministic estimators). Although most of the estimators used in prac-
tice are deterministic, there are a number of reasons to consider randomized estimators.
(a) For certain formulations, such as the minimizing worst-case risk (minimax approach), deterministic

estimators are suboptimal and it is necessary to randomize. On the other hand, if the objective is to
minimize the average risk (Bayes approach), then it does not lose generality to restrict to determin-
istic estimators.

(b) The space of randomized estimators (viewed as Markov kernels) is convex which is the convex
hull of deterministic estimators. This convexification is needed for example for the treatment of
minimax theorems.

Lemma 1.14. If the loss function ℓ : Y× Y′ → R is convex in the second argument, then the best estimator is
deterministic.

Proof. Let X be an observation samples from distribution Pθ ∈ M(X) for some parameter θ ∈ Θ, we
denote label y ≜ T(θ), and random prediction T̂(X). From conditional Jensen’s inequality applied to
the second argument of loss function ℓ, it follows that Rθ(T, T̂) = E[ℓ(y, T̂(X)) | θ] = E[E[ℓ(y, T̂(X)) |
X,θ] | θ]⩾ E[ℓ(y,E[T̂(X) | X,θ]) | θ].
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Remark 6. For any randomized estimator T̂(X), we can derandomize it by considering its conditional
expectation E[T̂(X) | X,θ], which is a deterministic estimator. For convex loss functions, the risk for
deterministic estimator dominates that of the random estimator at every parameter θ.

2 Gaussian location model (GLM)

Definition 2.1 (Gaussian location model (GLM) or normal mean model). Consider parameter space
Θ ⊆ Rd where Id denotes the d-dimensional identity matrix. Gaussian location model (GLM) is the collec-
tion of d-dimensional Gaussian distributions parameterized by mean θ and variance σ2, and denoted

P(Θ)≜
{
N (θ,σ2 Id) : θ ∈ Θ

}
.

Remark 7. For an observation X : Ω → Rd generated by GLM on parameter space Θ ⊆ Rd, we can write
the observation as X = θ + Z where Z is a zero-mean Gaussian random variable N (0,σ2 Id).

Example 2.2 (Parametric spaces Θ ⊆ Rd for GLM). Following are some of the examples.
(a) Unconstrained. Θ = Rd.
(b) ℓp-norm balls. Θ =

{
θ ∈ Rd : ∥θ∥p ⩽ 1

}
.

(c) k-sparse vectors. Θ =
{

θ ∈ Rd : ∥θ∥0 ⩽ k
}

where ∥θ∥0 ≜ |{i ∈ [d] : θi ̸= 0}| is the size of the
support of θ.

(d) r-rank matrices. Θ =
{

θ ∈ Rd1×d2 : rankθ ⩽ r
}

. A matrix θ ∈ Rd1×d2 can be vectorized into a
d = d1 × d2 dimensional vector.

Remark 8. Let parameter space Θ ⊆ Rd, observation space X ≜ Rd, and observation X sampled with
a Gaussian distribution with mean θ and covariance matrix σ2 Id. Then, we can write the conditional

density of X given parameter θ as dPθ(x)
dx ≜ 1

(2πσ2)d/2 e−
1

2σ2 ∥x−θ∥2
2 .

Example 2.3 (Loss functions and estimators for GLM). Let Y= Y′ = Θ where T(θ) = θ and denote
θ̂ = T̂(X). We consider following loss functions ℓ : Θ × Θ → R+ defined for all (θ, θ̂) ∈ Θ × Θ.
(a) A p-norm loss function defined as ℓ(θ, θ̂)≜

∥∥θ − θ̂
∥∥α

p for p ⩾ 1 and α > 0.

(b) We define the log likelihood loss function defined for each θ, θ̂ as ℓ(θ, θ̂) ≜ − ln dPθ̂(X)
dx . The

resulting estimator that minimizes the loss is called the maximum likelihood estimator (MLE)
and denoted by θ̂ML. From the definition of the log likelihood loss function, minimizing log
likelihood loss for GLM is equivalent to maximizing log likelihood of sample X, which for
GLM is given by

− ln
dPθ̂(X)

dx
=

d
2

ln(2πσ2) +
1

2σ2

∥∥X − θ̂
∥∥2

2 .

We observe that θ̂ML = X maximizes the log-likelihood for GLM.

(c) The resulting estimator based on shrinkage is called the James-Stein estimator θ̂JS ≜
(

1 −
(d−2)σ2

∥X∥2
2

)
X.
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