
Lecture-16: Bayes and minimax risk

1 Bayes and minimax risk

Definition 1.1 (Simple setting). For notational simplicity, we consider the task of estimating T(θ)≜ θ,
such that label, prediction, and parameter spaces are identical, i.e. Y = Y′ = Θ. The observation X :
Ω → X is sampled with distribution Pθ ∈ M(X), and the random estimate θ̂ ≜ T̂(X) is a function of
observation X and external randomness independent of everything else.

Remark 1. The risk Rθ(θ̂) of an estimator θ̂ depends on the ground truth θ. To choose an estimator, we
need to compare the risk profiles of different estimators meaningfully.

Definition 1.2 (Inadmissible estimator). Consider two estimators θ̂1, θ̂2 such that Rθ(θ̂1)⩽ Rθ(θ̂2) point-
wise for all θ, then θ̂2 is inadmissible.

Remark 2. If two estimators θ̂1, θ̂2 do not dominate each other point wise, then the comparison is not
clear. For example, consider the case when peak of risk θ̂2 is bigger than the peak of risk θ̂1, however
the average risk of θ̂2 is smaller than the average risk of θ̂1. From worst-case (minimax) view, θ̂1 is a
better estimator, whereas from average-case (Bayesian) view, θ̂2 is a better estimator.

1.1 Bayes risk

Definition 1.3 (Bayes risk). Let π ∈ M(Θ) be a prior probability distribution on parameter space Θ.
Then the average risk with respect to prior π of an estimator θ̂ is defined as Rπ(θ̂) ≜ Eθ∼π Rθ(θ̂) =

E[E[ℓ(θ, θ̂) | θ]]. Given a prior π, Bayes risk of estimator θ̂ is the minimal average risk R∗
π ≜ infθ̂ Rπ(θ̂).

An estimator θ̂B is called a Bayes estimator if it attains the Bayes risk R∗
π = Eθ∼π [Rθ(θ̂B)]. We define the

worst case Bayes risk as R∗
B ≜ supπ∈P(Θ) R∗

π . If the supremum is attained for some prior π, the prior is
called least favorable.

Lemma 1.4. Bayes estimator is always deterministic for any loss function.

Proof. Any randomized estimator θ̂ ≜ T̂(X) is a random variable conditioned on X and independent of
everything else. We observe that for each x ∈ X,

E[ℓ(θ, T̂(X)) | X = x,θ] =
∫

θ̂∈Θ
ℓ(θ, θ̂)dPT̂(X)|X=x(θ̂)⩾ inf

{
ℓ(θ, θ̂) : dPT̂(X)|X=x > 0

}
.

We denote this pointwise lower bound on the conditional expectation as inf T̂(X). Hence, the risk of
any randomized estimator is lower bounded by

Rπ(θ̂) = Eℓ(θ, T̂(X)) = E[E[ℓ(θ, T̂(X)) | X,θ]]⩾ E infℓ(θ, T̂(X)).

Exercise 1.5 (Bayes risk for square loss function). Consider the statistical decision theory simple
setting with unconstrained parameter set Θ ≜ Rd, input space X = Θ, a prior π ∈ M(Θ), and
the quadratic loss ℓ : (θ, θ̂) 7→

∥∥θ − θ̂
∥∥2

.
(a) Show that the best Bayes estimator is deterministic for any loss function. Consequently, it

suffices to focus on deterministic estimators T̂(X).
(b) Show that for any deterministic estimator T̂(X), we have E[(θ − E[θ | X])T̂(X)] = 0.
(c) Show that the Bayes estimator for quadratic loss is T̂B(X)≜ E[θ | X].
(d) Show that the Bayes risk is E[tr(cov(θ | X))].
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Exercise 1.6 (Bayes risk for GLM). Consider the statistical decision theory simple setting with
unconstrained parameter space Θ ≜ Rd and input space X = Θ. For GLM, the observation
X ≜ θ + Z, where Z is independent of θ and has a zero-mean Gaussian distribution N (0,σ2 Id).
Consider a Gaussian prior π ∈M(X) with zero mean and covariance matrix sId.
(a) Given the observation X, derive the posterior distribution Pθ|X .

(b) Find the Bayes estimator and Bayes risk for quadratic loss function ℓ : (θ, θ̂) 7→
∥∥θ − θ̂

∥∥2
.

1.2 Minimax risk

A common criticism of the Bayesian approach is the arbitrariness of the selected prior. Instead, we take
a frequentist viewpoint by considering the worst-case situation.

Definition 1.7 (Minimax risk). The minimax risk is defined as R∗ ≜ infθ̂ supθ∈Θ Rθ(θ̂). If there exists θ̂m

such that supθ∈Θ Rθ(θ̂m) = R∗, then the estimator θ̂m is minimax optimal.

Remark 3. Let ϵ > 0. Finding the value of the minimax risk R∗ entails showing the following.
(a) A minimax upper bound. Find the minimax estimator θ̂m such that supθ∈Θ Rθ(θ̂m)⩽ R∗ + ϵ.
(b) A minimax lower bound. For any estimator θ̂, find a parameter θ ∈ Θ such that Rθ(θ̂)⩾ R∗ − ϵ.

Definition 1.8. We say that two nets a,b ∈ RI are asymptotically equal if cai ⩽ bi ⩽ Cai for each i ∈ I and
some universal constants c,C ⩾ 0. We denote a ≍ b and call a a constant factor approximation of b.

Remark 4. Often this task is difficult, especially in high dimensions. Instead of the exact minimax risk, it
is often useful to find a constant factor approximation Ψ, which we call minimax rate, such that R∗ ≍ Ψ.
Establishing Ψ is the minimax rate still entails proving the minimax upper and lower bounds, albeit
within multiplicative constant factors.

Remark 5. In practice, minimax lower bounds are rarely established according to the original definition.
The next result shows that the Bayes risk is always lower than the minimax risk. All lower bound
techniques essentially boil down to evaluating the Bayes risk with a sagaciously chosen prior.

Theorem 1.9. Minimax risk is lower bounded by the worst Bayes risk, i.e. R∗ ⩾ R∗
B ≜ supπ∈P(Θ) R∗

π . If the
supremum is attained for some prior, we say it is least favorable.

Proof. Following are two equivalent ways to prove this fact.
(a) max is greater than mean. For any estimate θ̂ and prior π, we have average risk Rπ(θ̂) =Eθ∼π Rθ(θ̂)⩽

supθ∈Θ Rθ(θ̂). Taking the infimum over θ̂ on both sides completes the proof.
(b) min max greater than max min. Recall that for any f : X× Y → R, we have minx maxy f (x,y) ⩾

maxy minx f (x,y). It follows that

R∗ = inf
θ̂

sup
θ

Rθ(θ̂) = inf
θ̂

sup
π∈P(Θ)

Rπ(θ̂)⩾ sup
π∈P(Θ)

inf
θ̂

Rπ(θ̂) = sup
π∈P(Θ)

R∗
π .

Example 1.10 (Minimax risk is minimized by randomized estimators). Unlike Bayes estimators
which are always deterministic, to minimize the worst-case risk it is sometimes necessary to ran-
domize for example in the context of hypotheses testing. Specifically, consider a trivial experiment
where parameter space Θ ≜ {0,1} and there is no observation X, so that we are forced to guess the
value of θ ∈ Θ under the zero-one loss ℓ(θ, θ̂) = 1{θ ̸=θ̂}. Consider a Bernoulli estimator θ̂ : Ω → Θ

with probability P
{

θ̂ = 1
}
= p, such that Rθ(θ̂) = p̄θ + θ̄p, and supθ Rθ(θ̂) = p̄ ∨ p. Infimum over

all estimators is the infimum over all probabilities p, and we can find the minimax risk

R∗ ≜ inf
θ̂

sup
θ

Rθ(θ̂) = inf
p

sup
θ

p̄θ + θ̄p = inf
p

p̄ ∨ p =
1
2

.

That is, the minimax risk 1
2 is achieved by random guessing θ̂ with uniform Bernoulli distribution

but not by any deterministic θ̂.
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Example 1.11 (Minimax quadratic risk of GLM). Consider the statistical decision theory simple
setting for Gaussian location model with unconstrained parameter space Θ ≜ Rd, input space X=

Θ, observation X ∼ N (θ,σ2 Id), and quadratic loss function ℓ : (θ, θ̂) 7→
∥∥θ̂ − θ

∥∥2
. Recall that the

minimax risk is defined as R∗ ≜ infθ̂ supθ∈Θ Rθ(θ̂), where Rθ(θ̂)≜ E[ℓ(θ, θ̂) | θ]. The upper bound is
achieved by any estimate, and the lower bound is achieved by Bayes risk under any prior π ∈P(Θ).
That is,

R∗
π ⩽ R∗ ⩽ sup

θ∈Θ
Rθ(θ̂).

(a) For the upper bound, we consider a maximum likelihood estimator and recall that the max-
imum likelihood estimate for GLM and quadratic cost is θ̂ML ≜ X. Since Z = X − θ is zero
mean Gaussian with distribution N (0,σ2 Id), the risk for ML estimate and quadratic loss is
Rθ(θ̂ML) = E[∥Z∥2 | θ] = dσ2 for all θ ∈ Θ.

(b) For the lower bound, we consider prior distribution π ≜N (0, sId) parametrized by variance s.
The Bayes estimator for quadratic loss is θ̂ = E[θ | X], and the Bayesian risk under this prior is
R∗

π = sσ2

s+σ2 d which is increasing in s. The least favorable prior is the one with the worst variance,
and it follows that R∗

B = lims→∞ R∗
π = dσ2. It follows that R∗ = dσ2.

Remark 6 (Non-uniqueness of minimax estimators). In general, estimators that achieve the minimax
risk need not be unique. For instance, as shown in Example 1.1, the MLE θ̂ML = X is minimax for the
unconstrained GLM in any dimension. On the other hand, it is known that whenever d ⩾ 3, the risk of
the James-Stein estimator is smaller that of the MLE everywhere and thus is also minimax. In fact, there
exist a continuum of estimators that are minimax for this problem.

Example 1.12 (Minimax risk greater than Bayes risk). Consider the statistical decision theory sim-
ple setting with Θ ≜ N and loss function ℓ : (θ, θ̂) 7→ 1{θ̂<θ}. For no observation case, estimate

θ̂ ≜ T̂ is a uniformly distributed random variable T̂ : Ω → [0,1] independent of everything else,
and risk Rθ(θ̂) = E[ℓ(θ, θ̂) | θ] = P(

{
θ̂ < θ

}
| θ) is a non-decreasing function of θ. It follows that

supθ Rθ(θ̂) = 1 for any estimator θ̂. From the definition of minimax risk R∗ ≜ infθ̂ supθ Rθ(θ̂) = 1.
For lower bound, we consider a prior π ∈ M(N), which results in Bayes risk Rπ(θ̂) =

∑θ∈Θ πθ P(
{

θ̂ < θ
}
| θ), a non-increasing function in estimate θ̂. Taking θ̂n ≜ n ∈ Θ for any n ∈ N, we

observe that R∗
π ≜ infθ̂n

Rπ(θ̂n) = 0 for any prior π ∈M(N). It follows that R∗
B = supπ∈M(N) R∗

π = 0.
Therefore, in this case R∗ = 1 > R∗

B = 0.

Exercise 1.13. Consider the statistical decision theory simple setting for Gaussian location model
with constrained parameter space Θ ≜ R+, input space X = R, observation X ∼ N (θ,σ2), and
quadratic loss function ℓ : (θ, θ̂) 7→

∥∥θ̂ − θ
∥∥2

.
(a) Show that the minimax quadratic risk of the GLM X ∼N (θ,σ2) with constrained parameter

space Θ = R+ is the same as the unconstrained case Θ = R.
(b) Show that the thresholded estimator X+ = X ∨ 0 achieves a better risk compared to maxi-

mum likelihood estimator, pointwise at every θ ∈ R+.

1.3 Duality of minimax and Bayes risk

Recall the inequality R∗ ⩾ R∗
B. This result can be interpreted from an optimization perspective. More

precisely, R∗ is the value of a primal convex optimization problem and R∗
B is precisely the value of its

dual program. Thus the inequality that minimax risk exceeds Bayes risk is simply weak duality. If strong
duality holds, then this is in fact an equality, in which case the minimax theorem holds.

Theorem 1.14. Minimax risk exceeds worst case Bayes risk, i.e. R∗ ⩾ R∗
B.
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Proof. For simplicity, we consider the simple setting and the case where Θ is a finite set. Recalling that
Rθ(θ̂) = E[ℓ(θ, θ̂) | θ], we write

R∗ = min
Pθ̂|X

max
θ∈Θ

Rθ(θ̂).

Since Pθ̂|X 7→ Rθ(θ̂) = ∑v∈Θ ℓ(θ,v)
∫
X

Pθ̂|X(v | x)dPθ(x) is an affine map and the pointwise supremum of
affine functions is convex. Hence, minimax is a convex optimization problem. To write down its dual
problem, we rewrite this in an augmented form

R∗ =min
Pθ̂|X ,t

t

such that Rθ(θ̂)⩽ t for all θ ∈ Θ.

Let πθ ⩾ 0 denote the Lagrange multiplier or the dual variable for each inequality constraint corre-
sponding to θ ∈ Θ. We define π ≜ (πθ : θ ∈ Θ), and write the Lagrangian for the above primal problem
as

L(Pθ̂|X , t,π)≜ t + ∑
θ∈Θ

πθ(Rθ(θ̂)− t) = (1 − ∑
θ∈Θ

πθ)t + ∑
θ∈Θ

πθ Rθ(θ̂).

By definition, we have R∗⩾minPθ̂|X ,tL(Pθ̂|X , t,π). We note that if ∑θ∈Θ πθ ̸= 1, then minPθ̂|X ,tL(Pθ̂|X , t,π) =

−∞. Why is that a problem? Thus π must be a probability measure and the dual problem is

max
π

min
Pθ̂|X ,t

L(Pθ̂|X , t,π) = max
π∈M(Θ)

min
Pθ̂|X

Rπ(θ̂) = max
π∈M(Θ)

R∗
π = R∗

B.

Remark 7. In summary, the minimax risk and the worst-case Bayes risk are related by convex duality,
where the primal variables are randomized estimators and the dual variables are priors. This view can
in fact be operationalized.
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