Lecture-16: Bayes and minimax risk

1 Bayes and minimax risk

Definition 1.1 (Simple setting). For notational simplicity, we consider the task of estimating T(6) £ 6,
such that label, prediction, and parameter spaces are identical, i.e. Y =Y = ©. The observation X :

QO — X is sampled with distribution Py € M(X), and the random estimate § £ T(X) is a function of
observation X and external randomness independent of everything else.

Remark 1. The risk Rg(0) of an estimator § depends on the ground truth 6. To choose an estimator, we
need to compare the risk profiles of different estimators meaningfully.

Definition 1.2 (Inadmissible estimator). Consider two estimators 01,0, such that Ry (1) < Rg(6,) point-
wise for all 0, then 6, is inadmissible.

Remark 2. If two estimators 61,0, do not dominate each other point wise, then the comparison is not
clear. For example, consider the case when peak of risk 92 is bigger than the peak of risk #;, however
the average risk of 0, is smaller than the average risk of f;. From worst-case (minimax) view, 6; is a
better estimator, whereas from average-case (Bayesian) view, f, is a better estimator.

1.1 Bayes risk

Definition 1.3 (Bayes risk). Let 7 € M(0O) be a prior probability distribution on parameter space ©.
Then the average risk with respect to prior 7 of an estimator  is defined as R (8) £ EgRy() =
E[E[¢(6,8) | 8]]. Given a prior 71, Bayes risk of estimator f is the minimal average risk R, £ infy R(6).
An estimator 03 is called a Bayes estimator if it attains the Bayes risk R%, = Eg[Rg(03)]. We define the
worst case Bayes risk as R} = supcp(@) R7- If the supremum is attained for some prior 7, the prior is
called least favorable.

Lemma 1.4. Bayes estimator is always deterministic for any loss function.

Proof. Any randomized estimator § £ T(X) is a random variable conditioned on X and independent of
everything else. We observe that for each x € X,

IE[E(B,T(X))|X:x,9]:/é€®€(9 0)dPy 0 x—(8) = inf {£(68,6) : APy, > 0}

We denote this pointwise lower bound on the conditional expectation as inf T(X). Hence, the risk of
any randomized estimator is lower bounded by

R(0) =E£(6,T(X)) =E[E[£(6,T(X)) | X,6]] > Einf£(6,T(X)).

Exercise 1.5 (Bayes risk for square loss function). Consider the statistical decision theory simple

setting with unconstrained parameter set © £ R4, input space X = ©, a prior T € M(®), and

the quadratic loss £ : (6,0) — ||6 — é||2.

(a) Show that the best Bayes estimator is deterministic for any loss function. Consequently, it
suffices to focus on deterministic estimators T(X).

(b) Show that for any deterministic estimator T(X), we have E[(§ — E[8 | X])T(X)] =0.

(c) Show that the Bayes estimator for quadratic loss is T5(X) £ E[6 | X].

(d) Show that the Bayes risk is E[tr(cov(6 | X))].




Exercise 1.6 (Bayes risk for GLM). Consider the statistical decision theory simple setting with
unconstrained parameter space ® 2 R? and input space X = ®. For GLM, the observation
X £ 60 + Z, where Z is independent of 6 and has a zero-mean Gaussian distribution N (0,021).
Consider a Gaussian prior 71 € M (X) with zero mean and covariance matrix sl;.

(a) Given the observation X, derive the posterior distribution Py x.

(b) Find the Bayes estimator and Bayes risk for quadratic loss function ¢ : (6,0) |6 — 9”2.

1.2 Minimax risk

A common criticism of the Bayesian approach is the arbitrariness of the selected prior. Instead, we take
a frequentist viewpoint by considering the worst-case situation.

Definition 1.7 (Minimax risk). The minimax risk is defined as R* = infssupyq Rg(@). If there exists 6,
such that sup, g Rg(ém) = R*, then the estimator 0, is minimax optimal.

Remark 3. Let € > 0. Finding the value of the minimax risk R* entails showing the following.
(a) A minimax upper bound. Find the minimax estimator ,, such that SUPgce Ro() < R* +e.

(b) A minimax lower bound. For any estimator §, find a parameter § € ® such that Ry(f) > R* —e.

Definition 1.8. We say that two nets a,b € R are asymptotically equal if ca; < b; < Ca; for each i € [ and
some universal constants c¢,C > 0. We denote a < b and call a a constant factor approximation of b.

Remark 4. Often this task is difficult, especially in high dimensions. Instead of the exact minimax risk, it
is often useful to find a constant factor approximation ¥, which we call minimax rate, such that R* <'¥.
Establishing ¥ is the minimax rate still entails proving the minimax upper and lower bounds, albeit
within multiplicative constant factors.

Remark 5. In practice, minimax lower bounds are rarely established according to the original definition.
The next result shows that the Bayes risk is always lower than the minimax risk. All lower bound
techniques essentially boil down to evaluating the Bayes risk with a sagaciously chosen prior.

Theorem 1.9. Minimax risk is lower bounded by the worst Bayes risk, i.e. R* > R}y £ sup - p @) R If the
supremum is attained for some prior, we say it is least favorable.

Proof. Followmg are two equivalent ways to prove this fact.

(a) maxis greater than mean. For any estimate 0 and prior 77, we have average risk R (f) = Eg. Ry () <
Suppce Re(0). Taking the infimum over § on both sides completes the proof.

(b) min max greater than max min. Recall that for any f : X x Y — IR, we have min, max, f(x,y) >
max, miny f(x,y). It follows that

= infsupRg(f) =inf sup Rr(f) > sup infR,(d)= sup R:.
0 0 0 neP(®) nep(@) ¢ neP(®)

Example 1.10 (Minimax risk is minimized by randomized estimators). Unlike Bayes estimators
which are always deterministic, to minimize the worst-case risk it is sometimes necessary to ran-
domize for example in the context of hypotheses testing. Specifically, consider a trivial experiment
where parameter space ® £ {0,1} and there is no observation X, so that we are forced to guess the
value of 8 € ® under the zero-one loss £(6,0) = 1 {026} Consider a Bernoulli estimator 8 : Q) — @

with probability P {8 =1} = p, such that Ry(9) = p6 + 0p, and sup, Rp(8) = p V p. Infimum over
all estimators is the infimum over all probabilities p, and we can find the minimax risk

* £ infsup Ry(f) = infsup pf + Op = ?7 F’Zl
6 o P g 2

That is, the minimax risk 1 is achieved by random guessing § with uniform Bernoulli distribution
but not by any deterministic 8.



Example 1.11 (Minimax quadratic risk of GLM). Consider the statistical decision theory simple
setting for Gaussian location model with unconstrained parameter space ® = R¥, input space X =
®, observation X ~ N(6,021;), and quadratic loss function ¢ : (6,0) — ||0 — 0”2. Recall that the
minimax risk is defined as R* £ inf;sup,_g Ro(f), where Ry (8) £ E[((6,0) | 8]. The upper bound is
achieved by any estimate, and the lower bound is achieved by Bayes risk under any prior 77 € P(®).
That is, X
Ry < R* <supRy(h).
0c®
(a) For the upper bound, we consider a maximum likelihood estimator and recall that the max-
imum likelihood estimate for GLM and quadratic cost is Oy, £ X. Since Z = X — 6 is zero
mean Gaussian with distribution N (0,0%1;), the risk for ML estimate and quadratic loss is
Ro(Onr) = E[|| Z||* | 6] = do? for all 6 € ©.
(b) For the lower bound, we consider prior distribution 7t £ N(0,s1;) parametrized by variance s.
The Bayes estimator for quadratic loss is § = E[6 | X], and the Bayesian risk under this prior is

R% = 2%zd whichis increasing in s. The least favorable prior is the one with the worst variance,

and it follows that R} = lims ;0 R}, = do?. It follows that R* = do2.

Remark 6 (Non-uniqueness of minimax estimators). In general, estimators that achieve the minimax
risk need not be unique. For instance, as shown in Example the MLE 6y = X is minimax for the
unconstrained GLM in any dimension. On the other hand, it is known that whenever 4 > 3, the risk of
the James-Stein estimator is smaller that of the MLE everywhere and thus is also minimax. In fact, there
exist a continuum of estimators that are minimax for this problem.

Example 1.12 (Minimax risk greater than Bayes risk). Consider the statistical decision theory sim-
ple setting with ® £ N and loss function ¢ : (6,8) — 1 {0<0}- For no observation case, estimate
02 Tisa uniformly distributed random variable T:Q — [0,1] independent of everything else,
and risk Ry (0) = E[((6,0) | 0] = P({6 <6} | 0) is a non-decreasing function of 6. It follows that
sup, Rg(#) = 1 for any estimator 8. From the definition of minimax risk R* £ inf;sup, Rg(f) = 1.

For lower bound, we consider a prior © € M(IN), which results in Bayes risk R(8) =
Yoco TP ({0 < 0} | 0), anon-increasing function in estimate . Taking 6, £ n € © forany n € N, we
observe that R%, = inf Ry (6,) = 0 for any prior 7 € M(IN). It follows that R} = SUP e vy R =0
Therefore, in this case R* =1 > R% = 0.

Exercise 1.13. Consider the statistical decision theory simple setting for Gaussian location model
with constrained parameter space ® = R, input space X = R, observation X ~ N(6,0?), and

quadratic loss function ¢ : (6,8) — Hé — 9”2.

(a) Show that the minimax quadratic risk of the GLM X ~ N/ (6,0?) with constrained parameter
space ® = IR is the same as the unconstrained case @ = R.

(b) Show that the thresholded estimator X = X V 0 achieves a better risk compared to maxi-
mum likelihood estimator, pointwise at every 6 € R..

1.3 Duality of minimax and Bayes risk

Recall the inequality R* > R%. This result can be interpreted from an optimization perspective. More
precisely, R* is the value of a primal convex optimization problem and Rj is precisely the value of its
dual program. Thus the inequality that minimax risk exceeds Bayes risk is simply weak duality. If strong
duality holds, then this is in fact an equality, in which case the minimax theorem holds.

Theorem 1.14. Minimax risk exceeds worst case Bayes risk, i.e. R* > Rj,.



Proof. For simplicity, we consider the simple setting and the case where © is a finite set. Recalling that
Ry(9) =E[£(6,0) | 8], we write

R* = minmax Ry (8).
Since Py y — Ry (0) =Y pcol(6,0) Jx Pé|X(U | x)dPy(x) is an affine map and the pointwise supremum of
affine functions is convex. Hence, minimax is a convex optimization problem. To write down its dual
problem, we rewrite this in an augmented form

R* =mint
Pyt
such that Ry () <t for all @ € ©.

Let 719 > 0 denote the Lagrange multiplier or the dual variable for each inequality constraint corre-
sponding to 6 € @. We define 7 £ (719 : 0 € ®), and write the Lagrangian for the above primal problem

as
L(Pé‘x,t,ﬂ') St4 Z 71'9(R9(9) — t) = (1 — 2 7'[9)t + Z 7'[9R9(9).
0cO® 0cO 0cO
By definition, we have R* > minpé‘x,t by (Pé\x' t,7r). We note thatif ) gcg 719 # 1, then minpé‘x,t L (Pé\X' t,m) =
—oco. Why is that a problem? Thus 7r must be a probability measure and the dual problem is

maxmin £ (P, t,7m) = max minR;(§) = max R = R%.
7 Byt (Pojx£:70) neM(©) Py () reM@) © B

O

Remark 7. In summary, the minimax risk and the worst-case Bayes risk are related by convex duality,
where the primal variables are randomized estimators and the dual variables are priors. This view can
in fact be operationalized.
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