
Lecture-17: Minimax theorem

1 Minimax theorem

Consider the statistical decision theory simple setting, where the estimator θ̂ takes values in the action
space Θ̂ with a loss function ℓ : Θ × Θ̂ → R. A very general result asserts that R∗ = R∗

B, provided that
the following condition hold.

1. The experiment is dominated, i.e., Pθ ≪ ν holds for all θ ∈ Θ and for for some ν ∈M(X).
2. The action space Θ̂ is a locally compact topological space with a countable base e.g. the Euclidean

space.
3. The loss function is level-compact i.e., for each θ ∈ Θ,ℓ(θ, ·) is bounded from below and the sub-

level set
{

θ̂ ∈ Θ̂ : ℓ(θ, θ̂)⩽ a
}

is compact for each a ∈ R.
This result shows that for virtually all problems encountered in practice, the minimax risk coincides
with the least favorable Bayes risk. At the heart of any minimax theorem, there is an application of
the separating hyperplane theorem. Below we give a proof of a special case illustrating this type of
argument.

Definition 1.1. Let parameter space Θ be a finite set, and RΘ denote the Euclidean space of real-valued
vectors. Given an estimator θ̂, denote its risk vector R(θ̂)≜ (Rθ(θ̂) : θ ∈ Θ). We define

S ≜
{

R(θ̂) ∈ RΘ : θ̂ is a randomized estimator
}

, T ≜
{

t ∈ RΘ : tθ < R∗,θ ∈ Θ
}

.

The average risk Rπ(θ̂) with respect to a prior π ∈ M(Θ) is given by the inner product Rπ(θ̂) ≜〈
π, R(θ̂)

〉
.

Remark 1. Recall that Bayes risk R∗
π ≜ infθ̂ Rπ(θ) = infθ̂

〈
π, R(θ̂)

〉
for a prior π ∈ M(Θ). From the

definition of S, we get R∗
π(θ̂) = infs∈S ⟨π, s⟩. Further, from the definition of T, we obtain R∗ > ⟨π, t⟩ for

any t ∈ T. It follows that supt∈T ⟨π, t⟩ = R∗.

Lemma 1.2. The sets S, T defined in Definition 1.1 are convex and disjoint.

Proof. We will show the convexity and disjointness separately.
(a) Convexity. Let λ ∈ [0,1], and θ̂1 ≜ T̂1(X), θ̂2 ≜ T̂2(X) be two randomized estimators, then we can

define another randomized estimator θ̂(X) for an independent external randomness U : Ω → [0,1],
as

θ̂(X)≜ θ̂11{U⩽λ} + θ̂21{U>λ}.

It follows that Rθ(θ̂) ∈ S, and the convexity of S follows from the following observation,

Rθ(θ̂) = E[ℓ(θ, θ̂) | θ] = λRθ(θ̂1) + λ̄Rθ(θ̂2).

Similarly, we take t1, t2 ∈ T and hence ti
θ < R∗ for all θ ∈ Θ. It follows that λt1

θ + λ̄t2
θ < R∗ for all

θ ∈ Θ. Hence λt1 + λ̄t2 ∈ T, showing the convexity of T.
(b) Disjointness. Recall the definition of minimax risk R∗ ≜ infθ̂ supθ Rθ(θ̂). Fix ϵ > 0. Then, for any

estimator θ̂, there exists θ ∈ Θ such that Rθ(θ̂) > R∗ − ϵ. Since the choice of ϵ > 0 is arbitrary, it
follows that R(θ̂) /∈ T for any estimator θ̂, and hence S ∩ T = ∅.

Theorem 1.3 (Minimax theorem). Let Θ be a finite set, then R∗ = R∗
B in either of the following cases.

(a) Input space X is finite.
(b) The loss function ℓ is bounded from below, i.e., infθ,θ̂ ℓ(θ, θ̂) > −∞.

Proof. We will show for both of the conditions.
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(a) When the input space X is finite, the equality follows directly from the duality interpretation of
minimax and Bayes risk and the fact that strong duality holds for finite-dimensional linear pro-
gramming.

(b) We start by showing that if R∗ = ∞, then R∗
B = ∞. To see this, consider the uniform prior π ∈M(Θ)

and M ∈ N. Then for any estimator θ̂, there exists θ ∈ Θ such that Rθ(θ̂) ⩾ M. It follows that
Rπ(θ̂) ⩾ 1

|Θ| Rθ(θ̂) ⩾
M
|Θ| . Since the choice of M was arbitrary, the result follows. Therefore, we can

assume that R∗ < ∞ without any loss of generality. From theorem hypothesis ℓ is bounded from
below, and hence R∗ ∈ R. From Lemma 1.2, we observe that the sets S, T of Definition 1.1 are con-
vex and disjoint. Applying the separating hyperplane theorem to S and T, there exists a separating
hyperplane (π,b) where non-zero π ∈ RΘ and b ∈ R such that infs∈S ⟨π, s⟩+ b ⩾ supt∈T ⟨π, t⟩+ b.
That is, there exists a c ∈ R, such that infs∈S ⟨π, s⟩ ⩾ c ⩾ supt∈T ⟨π, t⟩. We observe that π must be
componentwise positive, otherwise supt∈T ⟨π, t⟩ = ∞ contradicting the finite upper bound c. Nor-
malizing π, we can assume that π ∈ M(Θ), a prior on Θ. The result follows from the observation
that

R∗
B ⩾ R∗

π = inf
s∈S

⟨π, s⟩⩾ sup
t∈T

⟨π, t⟩ = R∗.

1.1 Multiple observations and sample complexity

Definition 1.4 (Independent sampling model). Given m ∈ N and an experiment or statistical model
P(Θ) ≜ {Pθ ∈M(X) : θ ∈ Θ}, the independent sampling model is the experiment or statistical model
Pm(Θ)≜

{
P⊗m

θ ∈M(Xm) : θ ∈ Θ
}

. In this experiment, observation sample X : Ω → Xm is an i.i.d. ran-
dom vector drawn from Pθ ∈M(X) for some θ ∈ Θ.

Definition 1.5. Given a loss function ℓ : Y× Y′ → R+, the minimax risk for simple setting is denoted by

R∗
m(Θ)≜ inf

θ̂
sup
θ∈Θ

E[ℓ(θ, θ̂) | θ].

Remark 2. It follows that m 7→ R∗
m(Θ) is a non-increasing map. Typically, limm→∞ R∗

m(Θ) = 0 for a fixed
Θ ⊆ Rd. A natural question to ask is the rate of convergence of minimax risk as a function of sample
size m.

Definition 1.6 (Parametric rate). In the classical large-sample asymptotics, the rate of convergence for
the quadratic risk is usually of order Θ( 1

m ), which is commonly referred to as the parametric rate.

Definition 1.7 (Sample complexity). The minimum sample size to attain a minimax risk of ϵ > 0 is
called sample complexity and denoted by m∗(ϵ)≜ min{m ∈ N : R∗

m(Θ)⩽ ϵ} .

Example 1.8 (GLM). Consider GLM statistical model under simpler setting with unconstrained
parameter space Θ ≜ Rd, observation space X = Θ, identity matrix Id in d dimensions, and i.i.d.
sample X : Ω → Xm with common Gaussian distribution N (θ,σ2 Id). We note that X̄ ≜ 1

m ∑m
i=1 Xi is

a sufficient statistic of X for θ, and therefore the model reduces to a single observation X̄ that has a
Gaussian distribution N (θ, σ2

m Id). The minimax quadratic risk for this single Gaussian observation

is dσ2

m . We conclude that the sample complexity is m∗(ϵ) =
⌈

dσ2

ϵ

⌉
, which grows linearly with the

dimension d.

Exercise 1.9 (Sample complexity as a function of dimensions). Consider the matrix case Θ ≜
Rd×d with m independent observations in zero mean unit variance Gaussian noise, and let ϵ be
a small constant. Then we have
(a) For quadratic loss, namely,

∥∥θ − θ̂
∥∥2

F, we have R∗
m = d2

m and hence m∗(ϵ) = Θ(d2).

(b) If the loss function is
∥∥θ − θ̂

∥∥2
op then R∗

m ≍ d
m and hence m∗(ϵ) = Θ(d).

(c) If T(θ)≜ maxi∈[d] θi, then m∗(ϵ) = Θ(
√

lnd).
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1.2 Tensor product of experiments

Tensor product is a way to define a high-dimensional model from low-dimensional models.

Definition 1.10. For each i ∈ [d], consider parameter space Θi, input space Xi generated by statistical
experiment Pi ≜

{
Pθi : θi ∈ Θi

}
, label space Yi generated by estimand map Ti : Θi → Yi, prediction

space Y′i generated by estimator T̂i : Ω → (Y′i)
Xi , and the corresponding loss function ℓi : Yi × Y′i → R.

We respectively define the tensor product of parameter, input, label, prediction spaces, and statistical
experiments, as

Θ ≜ ∏
i∈[d]

Θi, X≜ ∏
i∈[d]

Xi, Y≜ ∏
i∈[d]

Yi, Y′ ≜ ∏
i∈[d]

Y′i, P ≜

{
Pθ ≜

d

∏
i=1

Pθi : θ ∈ Θ

}
.

The corresponding tensor product of estimand T : Θ → Y, estimator T̂ : Ω → (Y′)X, and loss function
ℓ : Y× Y′ → R are defined respectively for all θ ∈ Θ, observation X ∈ X, and pair (y,y′) ∈ Y× Y′, as

T(θ)≜ (Ti(θi) : i ∈ [d]), T̂(X)≜ (T̂i(X) : i ∈ [d]), ℓ(y,y′)≜
d

∑
i=1

ℓi(yi,y′i).

Remark 3. The observation X consists of independent and not identically distributed Xi ∼ Pθi and the
loss function takes a separable form. This should be contrasted with the multiple-observation model, in
which m i.i.d. observations drawn from the same distribution Pθ are given.

Theorem 1.11 (Minimax risk of tensor product). For the minimax risk of the tensorized experiment ∑d
i=1 R∗

B(Pi)⩽
R∗(P)⩽ ∑d

i=1 R∗(Pi). Consequently, if minimax theorem holds for each experiment, i.e., R∗(Pi) = R∗
B(Pi) for

each i ∈ [d], then it also holds for the tensorized experiment, i.e. R∗(P) = ∑d
i=1 R∗(Pi).

Proof. We will show the upper and lower bound separately.
(a) Upper bound. The upper bound follows by taking a sub-class of estimators where T̂i(X)≜ T̂i(Xi).

We can rewrite the minimax risk for the tensorized experiment as

R∗(P) = inf
T̂

sup
θ∈Θ

E[ℓ(T(θ), T̂(X)) | θ]⩽ inf
T̂

sup
θ∈Θ

d

∑
i=1

E[ℓi(Ti(θi), T̂i(X)) | θ]

⩽
d

∑
i=1

inf
T̂i(Xi)

sup
θi∈Θi

E[ℓi(Ti(θi), T̂i(Xi)) | θ] =
d

∑
i=1

R∗(Pi).

(b) Lower bound. For the lower bound, we take a product prior π ≜ ∏d
i=1 πi under which θ : Ω → Θ

is an independent vector, and consequently X : Ω → X is an independent vector. This implies that
Xj has no information regarding θi for j ̸= i, and hence for any random estimator T̂(X), we have
PT̂(X)|X = ∏d

i=1 PT̂i(Xi)|Xi
, and

Rπi (T̂i(Xi)) = Eℓi(Ti(θi), T̂i(Xi))⩾ inf
T̂i

Rπi (T̂i(Xi)) = R∗
πi

.

From the fact that sup is greater than mean, and the linearity of expectation, we get

sup
θ∈Θ

E[ℓ(T(θ), T̂(X)) | θ]⩾ Eℓ(T(θ), T̂(X)) =
d

∑
i=1

Eℓi(Ti(θi), T̂i(X)) =
d

∑
i=1

Rπi (T̂i(Xi)).

Since the choices of prior πi and estimator T̂ were arbitrary, the lower bound follows.

Example 1.12 (Unstructured GLM). Consider statistical decision theory simple setting with Y =

Y′ = Θ ≜ Rd. An unstructured GLM statistical model P ≜ (N (θ,σ2 Id) : θ ∈ Θ) with quadratic loss
ℓ : (θ, θ̂) 7→

∥∥θ − θ̂
∥∥2

2 = ∑d
i=1(θi − θ̂i)

2 is simply the d-fold tensor product of the one-dimensional
GLM. Since minimax theorem holds for the GLM, Theorem 1.11 shows the minimax risks sum up
to dσ2.
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Remark 4. In general, it is possible that the minimax risk of the tensorized experiment is strictly less
than the sum of individual minimax risks. This may appear surprising since Xi only carries information
about θi and it makes sense intuitively to estimate θi based solely on Xi. However, this is not always
true.

Example 1.13 (Minimax risk of tensorized experiment strictly less than the sum of individual
minimax risks). Consider statistical decision theory simple setting with label space Y= Y′ = Θ≜N,
observation X ≜ θZ where Z : Ω →{0,1} is an independent Bernoulli random variable with EZ = 1

2 ,
and the loss function ℓ : (θ, θ̂) 7→ 1{θ̂<θ}. If Z = 0, then all information about θ is erased. Therefore

for any estimator θ̂ ≜ T̂(X,U), the risk is lower bounded by

Rθ(θ̂) = P(
{

θ̂ < θ
}
| θ)⩾ P(

{
θ̂ < θ, Z = 0

}
| θ) =

1
2

P(
{

θ̂ < θ
}
| {Z = 0} ,θ).

Taking supremum on both sides, we obtain supθ Rθ(θ̂) ⩾
1
2 . It follows that minimax risk R∗ ⩾ 1

2 .
For an estimator T̂(X,U) ≜ X, we obtain risk Rθ(θ̂) = E[1{θZ<θ}] = E1{Z=0} =

1
2 . It follows that

minimax risk R∗ = 1
2 . Recall that R∗

π = 0 in this case for any prior π ∈M(Θ).
Next consider the tensor product of two copies of this experiment with Θ ≜ N2 observation

X ≜ θ ◦ Z where i.i.d. random vector Z : Ω → {0,1}2 with EZ1 =
1
2 , and the loss function L(θ, θ̂) =

1{θ̂1<θ1} + 1{θ̂2<θ2}. Consider the following estimator

θ̂1 = θ̂2 ≜ X1 ∨ X2 + 1{X1=X2=0} = (θ1 ∨ θ2)Z1Z2 + θ1Z1Z̄2 + θ2Z̄1Z2 + Z̄1Z̄2.

Since θ1,θ2 ∈ N, we can write the indicators

1{θ̂1<θ1} = 1{θ2<θ1}Z̄1Z2 + 1{1<θ1}Z̄1Z̄2, 1{θ̂2<θ2} = 1{θ1<θ2}Z1Z̄2 + 1{1<θ2}Z̄1Z̄2.

Since Z is i.i.d. Bernoulli random vector with EZ1 =
1
2 , we get EZ̄1Z2 = EZ1Z̄2 = EZ̄1Z̄2 =

1
4 . There-

fore, for any θ1,θ2 ∈ N, averaging over Z1, Z2, we can find the mean loss

EL(θ, θ̂) = E1{θ̂1<θ1} + E1{θ̂2<θ2} ⩽
1
4
(1{θ1<θ2} + 1{θ2<θ1} + 2)⩽

3
4

.

A Sufficient statistics

Definition A.1 (Sufficient statistic). Consider a parameter space Θ, input space X, output space Y,
prediction space Y′, a statistical model P(Θ) ≜ {Pθ ∈M(X) : θ ∈ Θ} for distribution of observation
X : Ω → X, an estimate T̂ : Ω → (Y′)X, and PT̂(X)|X some Markov kernel such that Pθ

T̂(X)
≜ Pθ PT̂(X)|X be

the induced distribution on T̂(X) for each parameter θ. We say that T̂ is a sufficient statistic of X for θ if
there exists a transition probability kernel PX|T̂(X) so that Pθ PT̂(X)|X = Pθ

T̂(X)
PX|T̂(X), i.e., PX|T̂(X) can be

chosen to not depend on θ.

Remark 5. The intuitive interpretation of T̂ being sufficient is that, with T̂ at hand, one can ignore X. In
other words, T̂ contains all the relevant information to infer about θ. This is because X can be simulated
on the sole basis of T̂ without knowing θ. As such, X provides no extra information for identification
of θ. Any one-to-one transformation of X is sufficient, however, this is not the interesting case. In the
interesting cases dimensionality of T will be much smaller (typically equal to that of θ) than that of X.

Theorem A.2. Let θ, X, T be as in the setting above. Then the following are equivalent.
(a) T is a sufficient statistic of X for θ.
(b) For all Pθ , θ → T → X.
(c) For all Pθ , I(θ; X|T) = 0.
(d) For all Pθ , I(θ; X) = I(θ; T), i.e., the data processing inequality for mutual information holds with equality.
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