Lecture-17: Minimax theorem

1 Minimax theorem

Consider the statistical decision theory simple setting, where the estimator § takes values in the action
space © with a loss function £: ® x @ — R. A very general result asserts that R* = R}, provided that
the following condition hold.
1. The experiment is dominated, i.e., Py < v holds for all # € ® and for for some v € M(X).
2. The action space @ is a locally compact topological space with a countable base e.g. the Euclidean
space.
3. The loss function is level-compact i.e., for each 6 € ®, (6, ) is bounded from below and the sub-
level set {é €0: E(G,é) < a} is compact for each 2 € R.
This result shows that for virtually all problems encountered in practice, the minimax risk coincides
with the least favorable Bayes risk. At the heart of any minimax theorem, there is an application of
the separating hyperplane theorem. Below we give a proof of a special case illustrating this type of
argument.

Definition 1.1. Let parameter space @ be a finite set, and R® denote the Euclidean space of real-valued
vectors. Given an estimator 8, denote its risk vector R(8) £ (Ry(f) : 6 € ®). We define

S& {R(@) € R®: § is a randomized estimator}, T {t €ER®:ty<R* 0 € ®}.
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The average risk R () with respect to a prior 7 € M(®) is given by the inner product R (f)

(70, R(0))-

Remark 1. Recall that Bayes risk R £ infyR(8) = infy(7,R(8)) for a prior 7 € M(®). From the
definition of S, we get R% () = inf,cs (71,5). Further, from the definition of T, we obtain R* > (r,t) for
any t € T. It follows that sup, . (77, t) = R*.

Lemma 1.2. The sets S, T defined in Definition [.1)are convex and disjoint.

Proof. We will show the convexity and disjointness separately.

(a) Convexity. Let A € [0,1], and §; 2 T} (AX),GAz £ T5(X) be two randomized estimators, then we can
define another randomized estimator 6(X) for an independent external randomness U : () — [0,1],
as

0(X) 2 011 ycny + Oaliusny-
It follows that Rg(f) € S, and the convexity of S follows from the following observation,
Rq(0) =E[£(6,0) | 6] = ARg(61) + ARg(62).

Similarly, we take 1,2 € T and hence té < R* for all 6 € ©. It follows that /\té + /_\tg < R* for all
6 € ©. Hence Mt + A2 € T, showing the convexity of T.

(b) Disjointness. Recall the definition of minimax risk R* £ infssup, Rg(0). Fix € > 0. Then, for any
estimator 6, there exists 6 € © such that Ry(f) > R* — e. Since the choice of € > 0 is arbitrary, it
follows that R(6) ¢ T for any estimator 6, and hence SN T = @.
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Theorem 1.3 (Minimax theorem). Let © be a finite set, then R* = Ry in either of the following cases.
(a) Input space X is finite. X
(b) The loss function £ is bounded from below, i.e., inf, 5£(6,6) > —oco.

Proof. We will show for both of the conditions.



(a) When the input space X is finite, the equality follows directly from the duality interpretation of
minimax and Bayes risk and the fact that strong duality holds for finite-dimensional linear pro-
gramming.

(b) We start by showing that if R* = co, then R}, = co. To see this, consider the uniform prior 77 € M (®)
and M € N. Then for any estimator 6, there exists § € ® such that Ry(f) > M. It follows that
R(8) > E)T‘Rg(é) > %. Since the choice of M was arbitrary, the result follows. Therefore, we can
assume that R* < co without any loss of generality. From theorem hypothesis ¢ is bounded from
below, and hence R* € R. From Lemma we observe that the sets S, T of Definition[1.1|are con-
vex and disjoint. Applying the separating hyperplane theorem to S and T, there exists a separating
hyperplane (77,b) where non-zero 7 € R® and b € R such that infses (77,8) + b > sup, .y (7,t) + b.
That is, there exists a ¢ € R, such that infscg (71,5) > ¢ > sup,.r (7, t). We observe that 71 must be
componentwise positive, otherwise sup,. (71,t) = co contradicting the finite upper bound c. Nor-
malizing 77, we can assume that 77 € M (@), a prior on ®. The result follows from the observation
that

Rp > Ry = inf (71,s) > sup (7t,t) = R™.
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1.1 Multiple observations and sample complexity

Definition 1.4 (Independent sampling model). Given m € IN and an experiment or statistical model
P(@) £ {Py € M(X): 0 € @}, the independent sampling model is the experiment or statistical model
P (©) £ {P5™ € M(X™):6 € ®}. In this experiment, observation sample X : () — X" is an i.i.d. ran-
dom vector drawn from Py € M(X) for some 6 € ©.

Definition 1.5. Given a loss function ¢: Y x Y’ — R, the minimax risk for simple setting is denoted by

R}, (©) £ infsupE[£(6,0) | 6].
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Remark 2. Tt follows that m — R}, (©) is a non-increasing map. Typically, lim,, . R}, (®) = 0 for a fixed
©® C R?. A natural question to ask is the rate of convergence of minimax risk as a function of sample
size m.

Definition 1.6 (Parametric rate). In the classical large-sample asymptotics, the rate of convergence for
the quadratic risk is usually of order ®( % ), which is commonly referred to as the parametric rate.

Definition 1.7 (Sample complexity). The minimum sample size to attain a minimax risk of € > 0 is
called sample complexity and denoted by m*(€) £ min{m € N : R},(®) < €}.

Example 1.8 (GLM). Consider GLM statistical model under simpler setting with unconstrained
parameter space ® £ IR, observation space X = ®, identity matrix I; in d dimensions, and i.i.d.
sample X : Q — X™ with common Gaussian distribution N'(8,0%1;). We note that X £ % Yt Xiis
a sufficient statistic of X for 6, and therefore the model reduces to a single observation X that has a

Gaussian distribution N (6, -1;). The minimax quadratic risk for this single Gaussian observation

do?

is % We conclude that the sample complexity is m*(e) = [T—‘ , which grows linearly with the

dimension d.

Exercise 1.9 (Sample complexity as a function of dimensions). Consider the matrix case ® =
R4 with m independent observations in zero mean unit variance Gaussian noise, and let € be
a small constant. Then we have ) )

(a) For quadratic loss, namely, ||§ — 0||, we have R}, = % and hence m*(e) = @(d?).

(b) If the loss function is || — éﬂip then R}, < % and hence m*(e) = O(d).

(c) If T(0) = max;c (g 0;, then m*(e) = ©(VInd).




1.2 Tensor product of experiments
Tensor product is a way to define a high-dimensional model from low-dimensional models.

Definition 1.10. For each i € [d], consider parameter space ©;, input space X; generated by statistical
experiment P; = {7791, :0; € @i}, label space Y; generated by estimand map T; : ®; — Y;, prediction
space Y/ generated by estimator T; : O — (Y/)™/, and the corresponding loss function ¢; : Y; x Y/ — R.
We respectively define the tensor product of parameter, input, label, prediction spaces, and statistical
experiments, as

d
e£Jle, x&2T]x, y&J[v, Y=]1Y, Pﬁ{Peﬁl‘[Pe,.:GW}.
ield] ield] ield] ied] i=1

The corresponding tensor product of estimand T : ® — Y, estimator T : Q — (¥')%, and loss function
0:Y x Y — R are defined respectively for all § € ©, observation X € X, and pair (y,y') € Y x Y, as

Mm

T(0) = (Ti(8;) :1 € [d]), T(X) £ (Ty(X) i € [d]), Uy,y") = Y tiyiyi)-

I
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Remark 3. The observation X consists of independent and not identically distributed X; ~ Py, and the
loss function takes a separable form. This should be contrasted with the multiple-observation model, in
which m i.i.d. observations drawn from the same distribution Py are given.

Theorem 1.11 (Minimax risk of tensor product). For the minimax risk of the tensorized experiment Zfl:l RE(P;) <
R*(P) < Y%, R*(P;). Consequently, if minimax theorem holds for each experiment ie., R*(P;) = R5(P;) for

each i € [d), then it also holds for the tensorized experiment, i.e. R*(P) = YL, R*(P).

Proof. We will show the upper and lower bound separately.

(a) Upper bound. The upper bound follows by taking a sub-class of estimators where T;(X) £ T;(X;).
We can rewrite the minimax risk for the tensorized experiment as

A

R*(P) = infsup E[¢((T(0), T(X)) | 8] < infsup ZIE T:(6;), T;(X)) | 6]

T 9co T 9cOi=
d

<3 inf sup EI6(T(6),5:(X)) 6] = R (P
i—1Ti(Xi) 6;€@; =

(b) Lower bound. For the lower bound, we take a product prior 7 = H _, 7t under which 8: Q) — ®
is an independent vector, and consequently X : (3 — X is an independent vector. This implies that
Xj has no information regarding 6; for j # i, and hence for any random estimator T(X), we have

Piixox =TTz Py, and
Ry (Ti(X;)) = E4i(Ti(6;), Ti(X;)) > irT}fRni(Ti(Xi)) =R%.

From the fact that sup is greater than mean, and the linearity of expectation, we get

d
sup E[¢(T (), T(X)) | 0] > E(T(6), T(X)) = } E(T;(6;), T;(X)) = ;Rm(ﬁ'(&))

0c® i=1

Since the choices of prior 7r; and estimator T were arbitrary, the lower bound follows.

Example 1.12 (Unstructured GLM). Consider statistical decision theory simple setting with Y =
Y =@ = R?. An unstructured GLM statistical model P = (N (0,0%1;) : 6 € ®) with quadratic loss
0:(0,0) — ||6— é||§ =4 (6; — 6;)? is simply the d-fold tensor product of the one-dimensional
GLM. Since minimax theorem holds for the GLM, Theorem shows the minimax risks sum up
to do?.



Remark 4. In general, it is possible that the minimax risk of the tensorized experiment is strictly less
than the sum of individual minimax risks. This may appear surprising since X; only carries information
about 0; and it makes sense intuitively to estimate 6; based solely on X;. However, this is not always
true.

Example 1.13 (Minimax risk of tensorized experiment strictly less than the sum of individual
minimax risks). Consider statistical decision theory simple setting with label space Y =Y =@ £ N,
observation X = 6Z where Z : ) — {0,1} is an independent Bernoulli random variable with EZ = %,
and the loss function ¢ : (6,0) — 1 {6<6}- If Z =0, then all information about 6 is erased. Therefore

for any estimator § = T(X, U), the risk is lower bounded by

A A A 1 A
Ro(0) =P({0<6}16)>P({0<6,Z=0}|0) = EP({e <0} |{Z=0},0).

Taking supremum on both sides, we obtain sup, Rg(#) > 1. It follows that minimax risk R* > 1.
For an estimator T'(X,U) £ X, we obtain risk Ry(f) = E[lip7<6)] = El{z_g, = 1. Tt follows that
minimax risk R* = % Recall that R}, = 0 in this case for any prior 7 € M(0©).

Next consider the tensor product of two copies of this experiment with @ £ IN? observation
X £ 6 o Z where i.i.d. random vector Z : Q) — {0,1}* with EZ; = 1, and the loss function L(6,0) =
1 {01<01} +1 {fr<0y}- Consider the following estimator

él = ég = X1V X+ ]l{Xl:Xz:O} =(0,V60y)Z1Z, + 01212y + 022172 + Z12Z5.
Since 01,6, € IN, we can write the indicators
Leg <o) = Lorco12122 + Linco 2122, Leg,e0,) = Yoo,y 2122 + Lincoy Z12s.

Since Z is i.i.d. Bernoulli random vector with EZ; = %, we get BEZ,1 7, =EZ1Z, =EZ,7Z, = %. There-
fore, for any 6,6, € IN, averaging over Z;, Z,, we can find the mean loss

A 1 3
]EL(Q,@) = IE]l{él<61} +]E]1{§2<92} < 1(1{91<92} + 1{92<91} +2) < o

A Sufficient statistics

Definition A.1 (Sufficient statistic). Consider a parameter space ©®, input space X, output space Y,
prediction space Y/, a statistical model P (@) = {Py € M(X):0 € ®} for distribution of observation

X:Q — X, an estimate T: Q) — (Y)%, and Pt (xx some Markov kernel such that P?(X) = PyPpxy x be

the induced distribution on T(X) for each parameter 8. We say that T is a sufficient statistic of X for 6 if
there exists a transition probability kernel Py 3y so that PgPpx) x = P;Z (X)PX\T(X)/ i.e., Py ¢x) can be

chosen to not depend on 6.

Remark 5. The intuitive interpretation of T being sufficient is that, with T at hand, one can ignore X. In
other words, T contains all the relevant information to infer about 6. This is because X can be simulated
on the sole basis of T without knowing 6. As such, X provides no extra information for identification
of 8. Any one-to-one transformation of X is sufficient, however, this is not the interesting case. In the
interesting cases dimensionality of T will be much smaller (typically equal to that of 0) than that of X.

Theorem A.2. Let 8, X, T be as in the setting above. Then the following are equivalent.

(a) T is a sufficient statistic of X for 0.

(b) ForallP’,0 — T — X.

(c) Forall P, 1(6;X|T) = 0.

(d) Forall P?, 1(6;X) =1(6;T), i.e., the data processing inequality for mutual information holds with equality.



	Minimax theorem
	Multiple observations and sample complexity
	Tensor product of experiments

	Sufficient statistics

