
Lecture-19: Divergence

1 Entropy

Definition 1.1. Consider a discrete random vector X : Ω → Xn with joint probability mass function
PX ∈ M(Xn) defined as PX(x) ≜ P{X = x} for each x ∈ X. The entropy of X is defined as H(X) ≜
−E log2 PX(X). Since entropy only depends on the distribution of a random vector, we write H(PX) in
place of H(X).

Remark 1. Entropy measures the intrinsic randomness or uncertainty of a random variable. In the simple
setting where X takes values uniformly over a finite set X, the entropy is simply given by log-cardinality,
i.e. H(X) = log2 |X|. In general, the more spread out or concentrated a probability mass function is, the
higher or lower is its entropy,

Definition 1.2. Let X : Ω → Xn be a discrete random vector and Y : Ω → R arbitrary random variable.
Let PX|Y ∈M(X) denote the conditional distribution of X given Y. The conditional entropy of X given Y
is defined as H(X | Y)≜ EH(PX|Y).

Definition 1.3. Similar to entropy, conditional entropy measures the remaining randomness of a ran-
dom variable when another is revealed. As such, H(X | Y) = H(X) whenever Y is independent of X.
But when Y depends on X, observing Y does lower the entropy of X.

2 KL divergence

Definition 2.1. Let (X,F) be a measurable space, we define the set of probability measures on X as

M(X)≜
{

P ∈ [0,1]F : P satisfies probability axioms
}

.

Let X : Ω → X and P, Q ∈ M(X). We say P is absolutely continuous w.r.t. Q and denoted by P ≪ Q if
Q(E) = 0 implies P(E) = 0 for all measurable E ∈ σ(X). If P ≪ Q, then Radon-Nikodym theorem show
that there exists a function g : X→ R+ alled a relative density or a Radon-Nikodym derivative of P w.r.t. Q
and denoted by dP

dQ ≜ g, such that P(E) =
∫

E gdQ for any measurable set E ∈ σ(X).

Remark 2. Note that dP
dQ may not be unique. In the simple cases, dP

dQ is the likelihood ratio.

(a) For discrete distributions, we can just take dP
dQ (x) to be the ratio of probability mass functions.

(b) For continuous distributions, we can take dP
dQ (x) to be the ratio of probability density functions.

Definition 2.2 (Kullback-Leibler (KL) divergence). Adopting the convention 0ln0 = 0, we can define
the KL divergence or relative entropy between any P, Q ∈M(X) with Q being the reference measure, as

D(P∥Q)≜

{
EP ln dP

dQ = EQ

[
dP
dQ ln dP

dQ

]
, P ≪ Q,

+∞, P ̸≪ Q.

2.1 Conditional divergence

Definition 2.3 (Conditional divergence). Consider random variables X : Ω →X and Y : Ω → Y defined
on the common probability space (Ω,F, P). measurable spaces (X,σ(X)) and (Y,σ(Y)) and a pair of
Markov kernels PY|X : X→ M(Y) and QY|X : X→ M(Y), and also a probability measure PX ∈ M(X).
Since (Y,σ(Y)) is standard Borel measurable space, i.e. σ(Y)≜ B(Y), we define

D(PY|X∥QY|X | PX)≜ Ex∼PX [D(PY|X=x∥QY|X=x)].
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Remark 3. We observe that as usual in Lebesgue integration it is possible that a conditional divergence
is finite even though D(PY|X=x∥QY|X=x) = ∞ for some x in a PX-negligible set.

Theorem 2.4 (Chain rule). For any pair of measures PX,Y and QX,Y we have

D(PX,Y∥QX,Y) = D(PY|X∥QY|X | PX) + D(PX∥QX),

regardless of the versions of conditional distributions PY|X and QY|X one chooses.

Proof. Recall that PX,Y = PXPY|X and QX,Y = QXQY|X . If PX ̸≪ QX then PX,Y ̸≪ QX,Y and both sides
of chain rule equation are infinity. Thus, we can assume PX ≪ QX without any loss of generality, and
define relative density λP ≜ dPX

dQX
∈ RX

+ . We next define a kernel RY|X : X → M(Y) that is a mixture of

kernels RY|X ≜ 1
2 PY|X + 1

2 QY|X , such that PY|X ≪ RY|X and QY|X ≪ RY|X . We write the corresponding
relative densities for all (x,y) ∈ X× Y, as

fP(y | x)≜
dPY|X=x

dRY|X=x
(y), fQ(y | x)≜

dQY|X=x

dRY|X=x
(y).

Defining RX,Y ≜ QXRY|X , we observe that PX,Y ≪ RX,Y and QX,Y ≪ RX,Y, and we can write down the
corresponding relative densities or all (x,y) ∈ X× Y, as

dPX,Y

dRX,Y
(x,y) = λP(x) fP(y | x),

dQX,Y

dRX,Y
(x,y) = fQ(y | x).

From the linearity of expectation, we can write the following equality

D(PX,Y∥QX,Y) = EPX,Y ln
dPX,Y

dQX,Y
= EPX,Y ln

λP(X) fP(Y | X)

fQ(Y | X)
= EPX,Y lnλP(X) + EPX,Y ln

fP(Y | X)

fQ(Y | X)
.

The result follows from the observation that EPX,Y lnλP(X) = EPX lnλP(X) = D(PX∥QX), and the defi-
nition of conditional divergence which implies that

EPX,Y ln
fP(Y | X)

fQ(Y | X)
= Ex∼PX EPY|X=x

ln
dPY|X=x

dQY|X=x
= D(PY|X∥QY|X | PX).

2.2 Data processing inequality

Theorem 2.5 (Data processing inequality). Consider two input distributions PX , QX ∈ M(X) and a com-
mon Markov kernel PY|X : X→M(Y) such that the joint distributions are PX,Y = PXPY|X and QX,Y = QXPY|X ,
and the corresponding output marginal distributions PY ≜

∫
X

dPX(x)PY|X=x and QY ≜
∫
X

dQX(x)PY|X=x .
Then D(PY∥QY)⩽ D(PX∥QX).

Proof. The result follows from the chain rule of KL divergence. That is,

D(PX,Y∥QX,Y) = D(PX|Y∥QX|Y | PY) + D(PY∥QY) = D(PY|X∥QY|X | PX) + D(PX∥QX).

Since QY|X = PY|X , and KL divergence is always positive, we get the result.

3 f -divergence

Definition 3.1. Let f : (0,∞)→ R+ be a convex function with f (1) = 0 and define its value at origin as

f (0)≜ limx↓0 f (x) and derivative at infinity as f ′(∞)≜ limx↓0 x f
(

1
x

)
. We further define

0 f
(0

0

)
= 0, 0 f

( a
0

)
= lim

x↓0
x f

( a
x

)
= a f ′(∞) for a > 0.
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Definition 3.2 ( f -divergence). Let P, Q ∈ M(X) for a measurable space (X,F) and f be as defined in
Definition 3.1. If P ≪ Q then the f -divergence is defined as

D f (P∥Q)≜ EQ f
( dP

dQ

)
.

Suppose for some common dominating measure µ such that P ≪ µ and Q ≪ µ, we have relative densi-
ties q ≜ dQ

dµ and p ≜ dP
dµ , then we have

D f (P∥Q) =
∫

q>0
q f

( p
q

)
dµ + f ′(∞)P{q = 0}

where the last term is taken to be zero when P{q = 0}= 0, regardless of the value of f ′(∞) which could
be infinite.

Example 3.3 (KL divergence). The map x 7→ f (x)≜ x ln x results in KL divergence.

Example 3.4 (Total variation). The map x 7→ f (x)≜ 1
2 |x − 1| results in the total variation divergence

(distance). For P, Q ∈M(X), we define total variation divergence as

TV(P, Q)≜
1
2

EQ

∣∣∣∣ dP
dQ

− 1
∣∣∣∣ = 1

2

∫
X
|dP − dQ| .

Exercise 3.5. Show that TV(P, Q) = 1 −
∫
X

d(P ∧ Q) for all P, Q ∈M(X).

Example 3.6 (χ2-divergence). The map x 7→ f (x)≜ (x − 1)2 results in the χ2 divergence. For P, Q ∈
M(X), we define χ2 divergence as

χ2(P∥Q)≜ EQ

( dP
dQ

− 1
)2

=
∫
X

(dP − dQ)2

dQ
=

∫
X

dP2

dQ
− 1.

We note that we could have chosen f (x)≜ x2 − 1 as well to get the same χ2 divergence.

Exercise 3.7. Consider two functions f , h : (0,∞) → R+ differing in a linear term, i.e. h(x) −
f (x) = c(x − 1) for all x ∈ (0,∞) and some c ∈ R. Show that Dh = D f .

Exercise 3.8. Show that D(P∥Q)⩽ ln(1 + χ2(P∥Q)) for all P, Q ∈M(X).

Example 3.9 (Squared Hellinger distance). The map x 7→ f (x) ≜ (1 −
√

x)2 results in squared
Hellinger distance which is defined for any P, Q ∈M(X) as

H2(P, Q)≜ EQ

(
1 −

√
dP
dQ

)2
=

∫
X
(
√

dQ −
√

dP)2 = 2 − 2
∫
X

√
dPdQ.

The quantity B(P, Q) ≜
∫
X

√
dPdQ is known as the Bhattacharyya coefficient or Hellinger affinity.

Hellinger distance H : M(X) × M(X) → R+ is defined as H(P, Q) ≜
√

H2(P, Q) for all P, Q ∈
M(X).
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Exercise 3.10. Show that Hellinger distance H(P, Q)≜
√

H2(P, Q) defines a metric on the space
of probability distributions M(X), and the map P 7→ H(P, Q) is not convex.

Example 3.11 (Le Cam divergence (distance)). The map x 7→ f (x) ≜ (1−x)2

2x+2 results in Le Cam di-
vergence (distance) which is defined for any P, Q ∈M(X) as

LC(P, Q)≜ EQ
(1 − dP

dQ )2

2(1 + dP
dQ )

=
1
2

∫
X

(dQ − dP)2

dQ + dP
.

Exercise 3.12. Show that square root of Le Cam distance
√

LC : M(X)×M(X)→ R+ defines a
metric on the space of probability distributions M(X).

Example 3.13 (Jensen-Shannon divergence). The map x 7→ f (x) ≜ x ln 2x
x+1 + ln 2

x+1 results in
Jensen-Shannon divergence which is defined for any P, Q ∈M(X) as

JS(P, Q)≜ EP ln
2 dP

dQ

1 + dP
dQ

+ EQ ln
2

1 + dP
dQ

= EP ln
dP

1
2 d(P + Q)

+ EQ ln
dQ

1
2 d(P + Q)

= D(P∥1
2
(P + Q)) + D(Q∥1

2
(P + Q)).

Exercise 3.14. Show the following maps M(X)×M(X) → R+ define a metric on the space of
probability distributions M(X).
(a) Total variation distance TV.
(b) Hellinger distance H.
(c) Square root of Le Cam divergence

√
LC.

(d) Square root of Jensen-Shannon divergence
√

JS.

Proposition 3.15. Consider functions f , f1, f2 from Definition 3.1 and P, Q ∈ M(X) such that P ≪ Q. Then
the following properties hold true for f -divergences.
(a) D f1+ f2(P∥Q) = D f1(P∥Q) + D f2(P∥Q).
(b) D f (P∥P) = 0.
(c) D f (P∥Q) = 0 for all P ̸= Q iff f (x) = c(x − 1) for some c. For any other f , we have D f (P∥Q) = f (0) +

f ′(∞) > 0 for P ⊥ Q.
(d) Let f1(x) ≜ f (x) + c(x − 1), then D f1(P∥Q) = D f (P∥Q) for all measures P, Q ∈ M(X). In particular,

we can always assume that f ⩾ 0 and if f is differentiable at 1 then f ′(1) = 0.

Proof. We will show these properties individually.
(a) This follows from linearity of expectation.
(b) This follows from the fact that log2 1 = 0.
(c) We verify that D f (P∥Q) = 0 for f = c(x − 1), since c(EQ

dP
dQ − 1) = 0. For a general f and orthogonal

measures P ⊥ Q, we have pq = 0, and hence by definition

D f (P∥Q) = f (0)
∫

q>0
qdµ + f ′(∞)P{p ⩾ 0} = f (0) + f ′(∞).

This divergence is well-defined (i.e., ∞ − ∞ is not possible) since by convexity f (0) > −∞ and
f ′(∞) > −∞. So all we need to verify is that f (0) + f ′(∞) = 0 if and only if f = c(x − 1) for some
c ∈ R. Since f (1) = 0 and f is convex, we obtain f ′(x)(1 − x) ⩽ − f (x) for each x ∈ R+. We define
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a map x 7→ g(x) ≜ f (x)
x−1 , and observe that g′(x) = f ′(x)

x−1 − f (x)
(x−1)2 ⩾ 0 for each x ∈ R+. That is, g is

nondecreasing in R+. Further, we have

g(0) = − lim
x↓0

f (0), g(∞) = lim
x↓0

g(
1
x
) = lim

x↓0

f (1/x)
1
x − 1

= lim
x↓0

x f
( 1

x

)
= f ′(∞) = − f (0).

By assumption, we have g(0) = g(∞) and hence g(x) is a constant on x > 0, as desired.

3.1 Conditional f -divergence

Definition 3.16 (Conditional f -divergence). Consider measurable spaces (X,F) and (Y,G) and a pair
of Markov kernels PY|X : X → M(Y) and QY|X : X → M(Y), a probability measure PX on X, and con-
vex function f : (0,∞)→ R with f (1) = 0, f (0) ≜ limx↓0 f (x), f ′(∞) ≜ limx↓0 x f ( 1

x ). Assuming (Y,G) is
standard Borel measurable space, i.e. G≜ B(Y), we define

D f (PY|X∥QY|X | PX)≜ Ex∼PX [D f (PY|X=x∥QY|X=x)]. (1)

We observe that as usual in Lebesgue integration it is possible that a conditional f -divergence is finite
even though D f (PY|X=x∥QY|X=x) = ∞ for some x in a PX-negligible set.

Exercise 3.17. Consider f from Definition 3.1 and P, Q ∈M(X) such that P ≪ Q. Show that the
following properties hold true for f -divergences.
(a) If PX,Y = PXPY|X and QX,Y = PXQY|X then the function x 7→ D f (PY|X=x∥QY|X=x) is measur-

able and D f (PX,Y∥QX,Y) = D f (PY|X∥QY|X | PX).
(b) If PX,Y = PXPY|X and QX,Y = QXPY|X then D f (PX,Y∥QX,Y) = D f (PX∥QX). In particular,

D f (PXPY∥QXPY) = D f (PX∥QX).

3.2 Data processing inequality

Theorem 3.18 (Monotonicity). D f (PX,Y∥QX,Y)⩾ D f (PX∥QX).

Proof. Note that in the case PX,Y ≪ QX,Y and thus PX ≪ QX , the proof is a simple application of Jensen’s
inequality to definition (1)

D f (PX,Y∥QX,Y) = EX∼QX EY∼QY|X f
( dPY|XPX

dQY|XQX

)
⩾ EX∼QX f

(
EY∼QY|X

dPY|XPX

dQY|XQX

)
= EX∼QX f (

dPX
dQX

).

To prove the general case we define

RX ≜
1
2
(PX + QX), RY|X ≜

1
2

PY|X +
1
2

QY|X , RX,Y ≜ RXRY|X .

It follows that PX,Y, QX,Y ≪ RX,Y and that PY|X=x, QY|X=x ≪ RY|X=x for every x. By Theorem 2.12 there
exist measurable functions p1, p2,q1,q2 so that

dPX,Y

dRX,Y
= p1(x)p2(y|x),

dQX,Y

dRX,Y
= q1(x)q2(y|x)

dPY|X=x

dRY|X=x
= p2(y|x),

dQY|X=x

dRY|X=x
= q2(y|x).

We also denote p(x,y) = p1(x)p2(y|x) and q(x,y) = q1(x)q2(y|x). Fix t > 0 and by convexity of f , we
consider a supporting line to f at t with slope µ, so that for all u ⩾ 0

f (u)⩾ f (t) + µ(u − t).

Thus, f ′(∞)⩾ µ and taking u = λt for any λ ∈ [0,1] we have shown for all t ⩾ 0 and λ ∈ [0,1]

f (λt) + λ̄t f ′(∞)⩾ f (λt) + λ̄tµ ⩾ f (t). (2)
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Note that we added t = 0 case as well, since for t = 0 the statement is obvious (recall, though, that
f (0)≜ limx↓0 f (0) can be equal to ∞). Next, fix some x with q1(x) > 0 and consider the chain∫

y:q2(y|x)>0
dRY|X=xq2(y | x) f

( p1(x)p2(y | x)
q1(x)q2(y | x)

)
+

p1(x)
q1(x)

PY|X=x {q2(Y | x) = 0} f ′(∞)

⩾ f
( p1(x)

q1(x)
PY|X=x {q2(Y | x) > 0}

)
+

p1(x)
q1(x)

PY|X=x {q2(Y | x) = 0} f ′(∞)⩾ f
( p1(x)

q1(x)

)
.

where first inequality is by Jensen’s inequality applied to convex function f , and second inequality by
taking t = p1(x)

q1(x) and λ = PY|X=x {q2(Y|x) > 0} in (2). Now multiplying the obtained inequality by q1(x)
and integrating over {x : q1(x) > 0} we get∫

q>0
dRX,Yq(x,y) f

( p(x,y)
q(x,y)

)
+ f ′(∞)PX,Y {q1(X) > 0,q2(Y|X) = 0}⩾

∫
x:q1(x)>0

dRXq1(x) f
( p1(x)

q1(x)

)
.

Adding f ′(∞)PX {q1(X) = 0} to both sides we obtain the result since both sides evaluate to definition
of f divergence D f (P∥Q).

Theorem 3.19 (Data processing). Consider a channel that produces Y given X based on the conditional law
PY|X . Let PY and QY denote the distribution of Y when X is distributed as PX and QX respectively. For any
f -divergence D f (·∥·),

D f (PY∥QY)⩽ D f (PX∥QX). (3)

Proof. This follows from the Theorem 3.18 on monotonicity and the fact that D f (PX,Y∥QX,Y) = D f (PX∥QX)
since PY|X = QY|X .

Next we discuss some of the more useful properties of f-divergence that parallel those of KL diver-
gence in Theorem 2.16.

Theorem 3.20 (Properties of f -divergences). Consider two measures P, Q ∈M(X).
(a) Non-negativity. D f (P∥Q)⩾ 0. If f is strictly convex1 at 1, then D f (P∥Q) = 0 if and only if P = Q.
(b) Joint convexity. (P, Q) 7→ D f (P∥Q) is a jointly convex function. Consequently, P 7→ D f (P∥Q) and

Q 7→ D f (P∥Q) are also convex.
(c) Conditioning increases f -divergence. Let PY = PXPY|X and QY = PXQY|X , then

D f (PY∥QY)⩽ D f (PY|X∥QY|X | PX).

Proof. (a) Non-negativity follows from monotonicity by taking X to be unary. To show strict positivity,
suppose for the sake of contradiction that D f (P∥Q) = 0 for some P ̸= Q. Then there exists some
measurable A such that P(A) = p ̸= q = Q(A) > 0. Applying the data processing inequality with
Y = 1{X∈A}, we obtain D f (Ber(p)∥Ber(q)) = 0. Consider two cases.

(i) 0 < q < 1: Then D f (Ber(p)∥Ber(q)) = q f ( p
q ) + (1 − q) f ( p

q ) = f (1);

(ii) q = 1: Then p < 1 and D f (Ber(p)∥Ber(q)) = f (p) + (1 − p) f ′(∞) = 0, i.e. f ′(∞) = f (p)
p−1 . Since

x 7→ f (x)
x−1 is non-decreasing, we conclude that f is affine on [p,∞).

Both cases contradict the assumed strict convexity of f at 1.
(b) Convexity follows from the data processing inequality.
(c) Recall that the conditional divergence was defined in (1) and hence the inequality follows from the

monotonicity. Another way to see the inequality is as result of applying Jensen’s inequality to the
jointly convex function D f (P∥Q).

1By strict convexity at 1, we mean for all s, t ∈ [0,∞) and α ∈ (0,1) such that αs + (1 − α)t = 1, we have α f (s) + (1 − α) f (t) >
f (1).
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