Lecture-19: Divergence

1 Entropy

Definition 1.1. Consider a discrete random vector X : () — X" with joint probability mass function
Py € M(X") defined as Px(x) £ P{X = x} for each x € X. The entropy of X is defined as H(X) =
—Elog, Px(X). Since entropy only depends on the distribution of a random vector, we write H(Px) in
place of H(X).

Remark 1. Entropy measures the intrinsic randomness or uncertainty of a random variable. In the simple
setting where X takes values uniformly over a finite set X, the entropy is simply given by log-cardinality,
ie. H(X) = log, |X|. In general, the more spread out or concentrated a probability mass function is, the
higher or lower is its entropy,

Definition 1.2. Let X : () — X" be a discrete random vector and Y : (2 — R arbitrary random variable.
Let Py|y € M(X) denote the conditional distribution of X given Y. The conditional entropy of X given Y
is defined as H(X | Y) = EH(Py;y).

Definition 1.3. Similar to entropy, conditional entropy measures the remaining randomness of a ran-

dom variable when another is revealed. As such, H(X | Y) = H(X) whenever Y is independent of X.
But when Y depends on X, observing Y does lower the entropy of X.

2 KL divergence

Definition 2.1. Let (X,J) be a measurable space, we define the set of probability measures on X as
M(X) & {P € [0,1]7 : P satisfies probability axioms }

Let X : ) — X and P,Q € M(X). We say P is absolutely continuous w.r.t. Q and denoted by P <« Q if
Q(E) = 0 implies P(E) = 0 for all measurable E € o(X). If P < Q, then Radon-Nikodym theorem show
that there exists a function g : X — R4 alled a relative density or a Radon-Nikodym derivative of P w.r.t. Q
and denoted by 5—5 £ g, such that P(E) = [, gdQ for any measurable set E € o'(X).

Remark 2. Note that g—g may not be unique. In the simple cases, :i% is the likelihood ratio.
(a) For discrete distributions, we can just take :i% (x) to be the ratio of probability mass functions.
(b) For continuous distributions, we can take a% (x) to be the ratio of probability density functions.

Definition 2.2 (Kullback-Leibler (KL) divergence). Adopting the convention 0In0 = 0, we can define
the KL divergence or relative entropy between any P,Q € M (X) with Q being the reference measure, as
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2.1 Conditional divergence

Definition 2.3 (Conditional divergence). Consider random variables X: () =+ X and Y : O — Y defined
on the common probability space (Q2,F,P). measurable spaces (X,0(X)) and (Y,0(Y)) and a pair of
Markov kernels Py|x : X — M(Y) and Qy|x : X — M(Y), and also a probability measure Px € M(X).

Since (Y,0(Y)) is standard Borel measurable space, i.e. ¢(Y) = B(Y), we define

D(Pyx[Qy|x | Px) = Ex~py [D(Pyx—x || Qvx=x)]-



Remark 3. We observe that as usual in Lebesgue integration it is possible that a conditional divergence
is finite even though D(Py|x—x||Qy|x—,) = oo for some x in a Px-negligible set.

Theorem 2.4 (Chain rule). For any pair of measures Px y and Qx y we have

D(Pxy|lQx,y) = D(Py|x[Qy|x | Px) + D(Px|[Qx),
regardless of the versions of conditional distributions Py x and Qy|x one chooses.

Proof. Recall that Pxy = PxPy|x and Qx,y = QxQyx. If Px &£ Qx then Pxy & Qx,y and both sides
of chain rule equation are infinity. Thus, we can assume Px < Qx without any loss of generality, and

define relative density Ap = 55’;( € RY. We next define a kernel Ryy : X — M(Y) that is a mixture of

kernels Ry x = %PY|X + %QHX, such that Py x < Ry|x and Qy|x < Ry|x. We write the corresponding
relative densities for all (x,y) € X x Y, as
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Defining Ry y 20 xRy|x, we observe that Px y < Rxy and Qxy < Rxy, and we can write down the
corresponding relative densities or all (x,y) € X x Y, as

apr d
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From the linearity of expectation, we can write the following equality

dPxy _ Eo In Ap(X)fp(Y | X) fr(Y [ X)
dQx,y Pry fo(Y | X) fo(Y|X)

The result follows from the observation that Ep, , InAp(X) = Ep, InAp(X) = D(Px||Qx), and the defi-
nition of conditional divergence which implies that

fr(Y]X)
fo(Y|X)

D(PX,Y || QX,Y) = ]EPX,Y In = ]EPX,Y In )‘P(X) + IEPX,Y In
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=Eyop Ep, 1 = D(Py|x||Qyx | Px)-

2.2 Data processing inequality

Theorem 2.5 (Data processing inequality). Consider two input distributions Px,Qx € M (X) and a com-
mon Markov kernel Py|x : X — M) such that the joint distributions are Px y = PxPy|x and Qx,y = QxPyx,

and the corresponding output marginal distributions Py £ [ dPx (x)Py|x—, and Qy £ [ dQx (%) Py|x—y -
Then D(Py||Qy) < D(Px||Qx).

Proof. The result follows from the chain rule of KL divergence. That is,

D(Pxy[Qx,y) = D(Px|y[Qx|y | Py) + D(Py|[Qy) = D(Py|x|[Qyx | Px) + D(Px|Qx)

Since Qy|x = Py|x, and KL divergence is always positive, we get the result. O

3 f-divergence
Definition 3.1. Let f : (0,00) — IR} be a convex function with f(1) = 0 and define its value at origin as

£(0) £1lim, o f(x) and derivative at infinity as f’(c0) £ lim, o xf (%) We further define

Of(g)zo, Of(%)zlimxf(g):af’(oo) for a > 0.
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Definition 3.2 (f-divergence). Let P,Q € M(X) for a measurable space (X,F) and f be as defined in
Definition[3.1} If P < Q then the f-divergence is defined as

Ds(PIQ) £ Eof (45)-

Suppose for some common dominating measure y such that P < # and Q < y, we have relative densi-

ties g £ ‘jig and p £ :{:ij , then we have

Dy(PIQ) = [ af(F)dn+ /()P tg =0}

where the last term is taken to be zero when P {q = 0} = 0, regardless of the value of f’(c0) which could
be infinite.

Example 3.3 (KL divergence). The map x — f(x) £ xInx results in KL divergence.

Example 3.4 (Total variation). The map x + f(x) = % |x — 1] results in the total variation divergence
(distance). For P,Q € M(X), we define total variation divergence as

o 1 [dP
TV(P,Q) £ JF ’dQ_l’ > [ 1dp—dql.

Exercise 3.5. Show that TV(P,Q) =1— [,.d(P A Q) forall P,Q € M(X).

Example 3.6 (x*-divergence). The map x — f(x) = (x — 1)? results in the x? divergence. For P,Q €

M(X), we define x* divergence as
dpP 2 dP — dQ)? dP?
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We note that we could have chosen f(x) £ x> — 1 as well to get the same x? divergence.

Exercise 3.7. Consider two functions f,h : (0,00) — R differing in a linear term, i.e. h(x) —
f(x) =c(x —1) forall x € (0,00) and some ¢ € R. Show that D, = Dy.

Exercise 3.8. Show that D(P||Q) < In(1+ x?(P||Q)) for all P,Q € M(X).

Example 3.9 (Squared Hellinger distance). The map x + f(x) £ (1 — y/x)? results in squared
Hellinger distance which is defined for any P,Q € M(X) as

Hz(p,Q)élEQ(l—\/g)z—/x(\/@—\/ﬁ)z—Z—z/x\/m.

The quantity B(P,Q) = JxV/dPdQ is known as the Bhattacharyya coeﬁﬁ'cient or Hellinger affinity.
Hellinger distance H : M(X) x M(X) — Ry is defined as H(P,Q) = \/H2(P,Q) for all P,Q €



Exercise 3.10. Show that Hellinger distance H(P, Q /H?(P,Q) defines a metric on the space
of probability distributions M (X), and the map P — H(P, Q) is not convex.

Example 3.11 (Le Cam divergence (distance)). The map x — f(x) = g;j%z results in Le Cam di-

vergence (distance) which is defined for any P,Q € M(X) as

_ 2
LC(P,0) & Eq (1-45) 1/x(dQ dP)

2(1+dQ) 2 dQ+dP

Exercise 3.12. Show that square root of Le Cam distance v/LC : M(X) x M(X) — R defines a
metric on the space of probability distributions M (X).

Example 3.13 (Jensen-Shannon divergence). The map x — f(x) £ xIn -2 oo A e +1 results in
Jensen-Shannon divergence which is defined for any P,Q € M(X) as

2dP 2 daP dQ
S(P, Epl +Epln— =EpIn-———— + Egln—~——
JS(P,Q) £ Pn1+dQ Qn1+,% Pn%d(P+Q) Qn%d(P+Q)
1 1
=D(P||5(P+Q)) + D(Ql5(P+Q))-

Exercise 3.14. Show the following maps M (X) x M(X) — R, define a metric on the space of
probability distributions M (X).

(a) Total variation distance TV.

(b) Hellinger distance H.

(c) Square root of Le Cam divergence v/LC.

(d) Square root of Jensen-Shannon divergence +/JS.

.

Proposition 3.15. Consider functions f, f1, f» from Definition 3.1jand P,Q € M(X) such that P < Q. Then

the following properties hold true for f-divergences.

(@) D45, (Pl|Q) = Dg, (P||Q) + Dp, (P[|Q).

(b) Df(P||P) =0.

(c) Df(P||Q) =0 forall P # Q iff f(x) = c(x — 1) for some c. For any other f, we have D¢(P||Q) = f(0) +
F/(00) > 0for P L Q.

(d) Let fi(x) = f(x) +c(x — 1), then Dy, (P||Q) = Df(P[|Q) for all measures P,Q € M(X). In particular,
we can always assume that f > 0 and if f is differentiable at 1 then f'(1) = 0.

Proof. We will show these properties individually.

(a) This follows from linearity of expectation.

(b) This follows from the fact that log,1 = 0.

(c) We verify that D¢(P||Q) =0 for f =c(x — 1), since c(]EQ;% —1) =0. For a general f and orthogonal
measures P 1 Q, we have pg = 0, and hence by definition

Dy(PIQ) = f0) | _ adn-+ f'(e0)P{p >0} = (0) + f'(eo).
This divergence is well-defined (i.e., oo — oo is not possible) since by convexity f(0) > —oo and

f'(o0) > —c0. So all we need to verify is that f(0) + f’(c0) = 0 if and only if f = c¢(x — 1) for some
c € R. Since f(1) =0 and f is convex, we obtain f'(x)(1 — x) < —f(x) for each x € R. We define



amap x — g(x) = %, and observe that g’(x) = J;,(fl) - % > 0 for each x € R,. Thatis, g is

nondecreasing in R ;. Further, we have

§(0) = —tmf(0),  goo) =limg(L) =tim L) —timar(L) = (o) = —5(0).

xJ0 xJ0° X x,0 % —1 x}0 x

By assumption, we have g(0) = g(c0) and hence g(x) is a constant on x > 0, as desired.

3.1 Conditional f-divergence

Definition 3.16 (Conditional f-divergence). Consider measurable spaces (X,F) and (Y,5) and a pair
of Markov kernels Py|x : X — M(Y) and Qy|x : X — M(Y), a probability measure Px on X, and con-
vex function f : (0,00) = R with f(1) =0, f(0) £ lim, o f(x), f/(c0) £ lim, g xf(%) Assuming (Y,9) is
standard Borel measurable space, i.e. § = B(Y), we define

D¢ (Py x| Qyx | Px) £ Brupy [Df(Pyjx—x | Qv x—x)]- (1)

We observe that as usual in Lebesgue integration it is possible that a conditional f-divergence is finite
even though Dy (Py|x—x[|Qy|x—x) = o for some x in a Px-negligible set.

Exercise 3.17. Consider f from Definitionand P,Q € M(X) such that P < Q. Show that the

following properties hold true for f-divergences.

(a) If Px,y = PxPy|x and Qx,y = PxQy|x then the function x — D¢ (Py|x—x[|Qy|x—,) is measur-
able and D¢ (Px,y||Qx,y) = D¢(Pyx||Qyx | Px)-

(b) If Px,y = PxPyx and Qx,y = QxPy|x then D¢(Px,y[|Qx,y) = Df(Px[Qx). In particular,
D¢ (PxPy||QxPy) = D¢(Px||Qx)-

3.2 Data processing inequality

Theorem 3.18 (Monotonicity). Df(Pxy||Qxy) > Df(Px||Qx)-

Proof. Note thatin the case Px y < Qx y and thus Px < Qx, the proof is a simple application of Jensen’s
inequality to definition

dPy|x Px dPy|xPx dPx
Dy (Px[Qxy) :]EX~QXIEY~Qy\xf(m) 2 ]EXNQxf(]EYNQY\xm) :EX“QXf(@)'

To prove the general case we define

1 1 1
RXéE(PX‘FQX)/ Ry|xéipy\x+§Qy|x/ RX,YéRXRY|X~
It follows that Px y, Qx,y < Rx,y and that Py|x_, Qy|x—x < Ry|x—, for every x. By Theorem 2.12 there

exist measurable functions p1, p2,41,4>2 so that

, dQx,y dPy|x—x AQy|x=x
ARy ~P1P20), gt =a(x)aa(yl) ARy x— p2(ylx) ARy x s 92(y|x)

We also denote p(x,y) = p1(x)p2(y|x) and q(x,y) = q1(x)g2(y|x). Fix t > 0 and by convexity of f, we
consider a supporting line to f at t with slope y, so that for all u > 0

fu) = f(t) +p(u—t).
Thus, f’(c0) > p and taking u = At for any A € [0,1] we have shown for all t > 0 and A € [0,1]

fAL) + Atf'(c0) > f(AL) + Aty > f(1). )



Note that we added t = 0 case as well, since for t = 0 the statement is obvious (recall, though, that
£(0) £1lim, o f(0) can be equal to c0). Next, fix some x with g1 (x) > 0 and consider the chain

Prx)pa(y [ %)y, pa(x)
ARy x— x p Y|x)=0
Lo Rty | 90f (BEESER ) 4+ P Py 02 1) =0 £ (o)
p1(x) / p1(x)
—=P Y|x)=0 o0) > .
g P a2y [0) =0} () > F(215)
where first inequality is by Jensen’s inequality applied to convex function f, and second inequality by
taking t = Z ;é )) and A = Py|x_, {q2(Y]x) > 0} in ). Now multiplying the obtained inequality by ¢ (x)
and integrating over {x : q1(x) > 0} we get

> £ (B s (Y [ 0> 0)) + &

[ @Ratenf (B + Py (n(X) > 0mr1X) =0b> [ kg (BE).

q(x,y) 1 (x)
Adding f’(o0)Px {g1(X) = 0} to both sides we obtain the result since both sides evaluate to definition
of f divergence D¢(P[|Q). O

Theorem 3.19 (Data processing). Consider a channel that produces Y given X based on the conditional law
Py|x. Let Py and Qy denote the distribution of Y when X is distributed as Px and Qx respectively. For any
f-divergence Dy (-||),

D¢(Py||Qy) < D (Px||Qx)- ®3)

Proof. This follows from the Theorem on monotonicity and the fact that D¢ (Px y[|Qx,y) = D¢ (Px[|Qx)
since PY‘X = QY‘X' O

Next we discuss some of the more useful properties of f-divergence that parallel those of KL diver-
gence in Theorem 2.16.

Theorem 3.20 (Properties of f-divergences). Consider two measures P,Q € M(X).

(a) Non-negativity. D¢(P||Q) > 0. If f is strictly convexﬂat 1, then D¢(P||Q) = 0 if and only if P = Q.

(b) Joint convexity. (P,Q) — Df(P||Q) is a jointly convex function. Consequently, P — D¢ (P|Q) and
Q> Dy (P||Q) are also convex.

(c) Conditioning increases f-divergence. Let Py = PxPy|x and Qy = PxQyx, then

D¢ (Py[|Qy) < Df(Pyx[|Qy|x | Px)-

Proof. (a) Non-negativity follows from monotonicity by taking X to be unary. To show strict positivity,
suppose for the sake of contradiction that D¢(P||Q) = 0 for some P # Q. Then there exists some
measurable A such that P(A) = p # q = Q(A) > 0. Applying the data processing inequality with
Y = 1yxcay, we obtain D¢ (Ber(p)||Ber(q)) = 0. Consider two cases.

(i) 0< g <1:Then D¢(Ber(p)||Ber(q)) =qf(5) + (1 —q)f(§) = f(1);
(ii) = 1: Then p < 1and D¢(Ber(p)|Ber(q)) = f(p) + (1 —p)f'(c0) =0, i.e. f'(c0) = 1P since

X % is non-decreasing, we conclude that f is affine on [p,0).
Both cases contradict the assumed strict convexity of f at 1.
(b) Convexity follows from the data processing inequality.
(c) Recall that the conditional divergence was defined in (1) and hence the inequality follows from the
monotonicity. Another way to see the inequality is as result of applying Jensen’s inequality to the
jointly convex function D¢ (P||Q).

=

O

1By strict convexity at 1, we mean for all s, € [0,00) and « € (0,1) such that as + (1 — a)t = 1, we have af(s) + (1 — a) f () >

f().
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