
Lecture-20: Local behavior of divergence

1 Local behavior of divergence

KL divergence is in general not continuous. Nevertheless, it is reasonable to expect that in non-pathological
cases the functional D(P∥Q) vanishes when P approaches Q “smoothly”. Due to the smoothness and
strict convexity of x ln x at x = 1, it is then also natural to expect that this functional decays “quadrat-
ically”. In this section, we examine this question first along the linear interpolation between P and
Q, then, more generally, in smooth parametrized families of distributions. These properties will be
extended to more general divergences later.

Definition 1.1. Consider a sample space Ω and event space F. A probability measure P : F → [0,1]
satisfies σ-additivity and certainty axioms. For a random variable X : Ω → X, we define set of measures
for X as M(X) that consists of probability measures P : σ(X) → [0,1] that satisfies σ-additivity and
certainty axioms.

1.1 Local behavior of divergence for mixtures

Consider a F measurable random variable X : Ω → X and two probability measures P, Q ∈M(X). Let
λ ∈ [0,1], λ̄ ≜ 1 − λ and consider D(λP + λ̄Q∥Q), which vanishes as λ → 0. Next, we show that this
decay is always sublinear.

Lemma 1.2. The map h : R+ → R defined as h(x)≜ x ln x for all x ∈ R+, is convex.

Proof. We observe that the second derivative of h exists and h′′(x) = 1
x > 0 for all x ∈ R+

Lemma 1.3. We define a map kg : [0,1] → R as kg(λ) ≜ (λg + λ̄) ln(λg + λ̄) for all λ ∈ [0,1] and g ∈ R+.
Then, the following statements hold true.
(a) kg(0) = 0 and kg(1) = g ln g and kg(λ)⩽ λg ln g for all λ ∈ [0,1].
(b) kg is a convex map in λ.
(c) kg(λ)/λ is increasing in λ ∈ [0,1].

Proof. We define a Bernoulli random variable X : Ω → {g,1} with probability mass function PX(g) ≜
P{X = g} = λ, then we observe that kg(λ) = h(EX).
(a) When λ = 0, we have X = 1 almost surely, resulting in kg(0) = h(EX) = h(1) = 0. When λ = 1, we

have X = f almost surely, resulting in kg(1) = h(EX) = h(g) = g ln g. Applying Jensen inequality
for convex map h, we get kg(λ) = h(EX)⩽ Eh(X) = λg ln g for all λ ∈ [0,1].

(b) The result follows since k′′g(λ) =
(g−1)2

λg+λ̄
⩾ 0 for all λ ∈ [0,1] and f ∈ R+. Alternatively, one can

observe that kg(λ) = h(EX) where EX = gλ + λ̄ is a composition of an affine and a convex map,
and hence is convex.

(c) For the convex function kg, we have kg(0) − kg(λ) ⩾ −λk′g(λ). Rearranging, we get (λk′g(λ) −
kg(λ))/λ2 ⩾ kg(0)/λ2 = 0. Recognizing that the left hand side of the previous equation is the first
derivative of kg(λ)/λ with respect to λ, we get the result.

Definition 1.4. KL divergence between two binary distributions is denoted by d(p∥q)≜ D((1− p, p)∥(1−
q,q)) = (1 − p) log2

1−p
1−q + p log2

p
q for all p,q ∈ [0,1].

Definition 1.5 (Mixture distribution). For λ ∈ [0,1] and P, Q ∈M(X), we define a mixture distribution
Pλ ≜ λP + λ̄Q ∈M(X).

Proposition 1.6. For mixing parameter λ ∈ [0,1] and P, Q ∈M(X), the following are true for the first derivative
of mixture distribution Pλ ∈M(X) with respect to λ at 0.
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(a) If D(P∥Q) < ∞, then the one-sided derivative of D(Pλ∥Q) at λ = 0 vanishes, i.e. d
dλ

∣∣∣
λ=0

D(Pλ∥Q) = 0.

(b) If we exchange the arguments, the criterion is even simpler,i.e. P ≪ Q iff d
dλ

∣∣∣
λ=0

D(Q∥Pλ) = 0.

Proof. Since limλ↓0 D(Pλ∥Q) = 0, we note that d
dλ

∣∣∣
λ=0

D(Pλ∥Q) = limλ↓0
1
λ D(Pλ∥Q).

(a) Since D(P∥Q) < ∞, we have P ≪ Q and we define relative density g ≜ dP
dQ . From the definition of

KL divergence and definition of kg in Lemma 1.3, we get

1
λ

D(Pλ∥Q) = EQ

[ 1
λ
(λg + λ̄) ln(λg + λ̄)

]
= EQ

kg(λ)

λ
.

Recall that kg(λ)/λ⩽ g ln g is a monotone increasing and bounded map, where EQg ln g= D(P∥Q)<
∞. Thus, we can apply the monotone convergence theorem to interchange limits and expectation,
to obtain

lim
λ↓0

1
λ

D(λP + λ̄Q∥Q) = EQ

[
lim
λ↓0

kg(λ)

λ

]
= EQk′g(0) = EQ(g − 1) = 0.

(b) If P ̸≪ Q, then there exists E ∈ σ(X) such that Q(E) = 0 and p ≜ P(E) > 0. Consider the binary
output space Y≜ {0,1}, and the processing X 7→ Y ≜ 1E(X) where Y : Ω → Y. This processing leads
to Markov kernel PY|X : X → M(Y) such that PY|X(1 | x) = 1{x∈E}. For input distribution Q and
mixture input distribution Pλ, the corresponding output distributions are

QY ≜ (1 − Q(E), Q(E)) = (1,0), Pλ
Y ≜ (1 − λP(E)− λ̄Q(E),λP(E) + λ̄Q(E)) = (1 − λp,λp).

Applying data processing inequality for divergence to this processing kernel PY|X , we get

D(Q∥Pλ)⩾ D(QY∥Pλ
Y ) = d(0∥λp) = − ln(1 − λp).

It follows that d
dλ

∣∣∣
λ=0

D(Q∥Pλ) = p > 0.

If P ≪ Q, then we define relative density g ≜ dP
dQ and observe that ln λ̄ ⩽ ln(λ̄ + λg)⩽ λ(g − 1) from

monotonicity of ln and the fact that ln(1+ x)⩽ x for each x ∈ R. Dividing by λ and assuming λ < 1
2

we get for some absolute constants c1 = 1, c2 = 1 + supλ<0.5

∣∣∣ ln λ̄
λ

∣∣∣∣∣∣∣ 1
λ

ln(λ̄ + λg)
∣∣∣∣⩽ |g − 1| ∨

∣∣∣∣ ln λ̄

λ

∣∣∣∣⩽ g + 1 +
∣∣∣∣ ln λ̄

λ

∣∣∣∣⩽ c1g + c2.

We recall that EQg = 1 < ∞ It follows that
∣∣∣ 1

λ ln(λ̄ + λg)
∣∣∣ is Q integrable. Applying dominated

convergence theorem to exchange limits and expectation, we get

lim
λ↓0

1
λ

D(Q∥Pλ) = lim
λ→0

−
∫
X

dQ
1
λ

ln(λg + λ̄) = −
∫
X

dQ lim
λ↓0

1
λ

ln(λg + λ̄) =
∫

dQ(1 − g) = 0.

Remark 1. The main message of Proposition 1.6 is that the function λ 7→ D(Pλ∥Q) is o(λ) as λ → 0. In
fact, in most cases it is quadratic in λ.

Exercise 1.7. Let λ ∈ [0,1], i ∈ {0,1} and Pi, Qi ∈ M(X), to define mixture distribution Qλ
i ≜

λQi + λ̄Pi. Show that under suitable technical conditions, the following equations hold

d
dλ

∣∣∣
λ=0

D(Qλ
0 ∥P1) = EQ0 ln

dP0

dP1
− D(P0∥P1),

d
dλ

∣∣∣
λ=0

D(Qλ
1 ∥Qλ

0 ) = EQ1 ln
dP1

dP0
− D(P1∥P0) + EP1

[
1 − dQ0

dP0

]
.

Lemma 1.8. We observe that Sx ≜
∫ 1

0
s

x(1−s)+s ds = x ln x−(x−1)
(x−1)2 .
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Proof. We observe that

Sx ≜
∫ 1

0

sds
x(1 − s) + s

=
1
x

∫ 1

0

(x(s − 1)− s + s)ds
x(1 − s) + s

+
1

1 − x

∫ 1

x

dy
y

= − 1
x
+

Sx

x
+

ln x
x − 1

.

Rearranging the terms, we get the result.

Proposition 1.9 (KL is locally χ2 like). For any λ ∈ [0,1] and distribution P, Q ∈M(X) we define mixture
distribution Pλ ≜ λP + λ̄Q ∈M(X). Then,

lim inf
λ↓0

1
λ2 D(Pλ∥Q) =

1
2

χ2(P∥Q).

Proof. We recall that f divergence remains unchanged for a shift of type a(x− 1) for any f : (0,∞)→R+.
Thus, we observe that for f (x)≜ x ln x − (x − 1), we have

D f (P∥Q) = EQ f
( dP

dQ

)
= D(P∥Q).

(a) Applying Fatou’s lemma, observing that f (1) = 0, using the L’Hospital rule to take limits, the fact
that f ′(x) = ln x, and definition of χ2 divergence, we obtain

liminf
λ↓0

1
λ2 D(Pλ∥Q) = liminf

λ↓0

1
λ2 EQ f (λ̄+λg)⩾EQ liminf

λ↓0

1
λ2 f (λ̄+λg) =

f ′′(1)
2

EQ(g− 1)2 =
1
2

χ2(P∥Q).

It follows that if χ2(P∥Q) = ∞ then so is 1
λ2 D(Pλ∥Q). Thus, we can assume that χ2(P∥Q) < ∞

without any loss of generality.
(b) We assume χ2(P∥Q) < ∞ and from the definition of Sx in Lemma 1.8, we observe that Sx =

f (x)
(x−1)2

and the integrand of Sx is positive and decreasing for x ∈ (0,∞). In particular, we have

0 ⩽
f (x)

(x − 1)2 =
∫ 1

0

s
x(1 − s) + s

ds ⩽
∫ 1

0
ds = 1.

Taking x = λ̄ + λg for g ≜ dP
dQ in the above inequality, we obtain 0 ⩽ 1

λ2 f (λ̄ + λg) ⩽ (g − 1)2. Since
EQ(g − 1)2 = χ2(P∥Q) < ∞, applying dominated convergence theorem to exchange limit and ex-
pectation, we obtain

lim
λ↓0

1
λ2 EQ f (λ̄ + λg) = EQ lim

λ↓0

1
λ2 f (λ̄ + λg) =

f ′′(1)
2

EQ(g − 1)2 =
1
2

χ2(P∥Q).
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