Lecture-20: Local behavior of divergence

1 Local behavior of divergence

KL divergence is in general not continuous. Nevertheless, it is reasonable to expect that in non-pathological
cases the functional D(P||Q) vanishes when P approaches Q “smoothly”. Due to the smoothness and
strict convexity of xInx at x =1, it is then also natural to expect that this functional decays “quadrat-
ically”. In this section, we examine this question first along the linear interpolation between P and
Q, then, more generally, in smooth parametrized families of distributions. These properties will be
extended to more general divergences later.

Definition 1.1. Consider a sample space () and event space F. A probability measure P : ¥ — [0,1]
satisfies o-additivity and certainty axioms. For a random variable X : () — X, we define set of measures
for X as M(X) that consists of probability measures P : 0(X) — [0,1] that satisfies o-additivity and
certainty axioms.

1.1 Local behavior of divergence for mixtures

Consider a ¥ measurable random variable X : ) — X and two probability measures P,Q € M(X). Let

A €1[0,1],A =1 — A and consider D(AP + AQ||Q), which vanishes as A — 0. Next, we show that this
decay is always sublinear.

Lemma 1.2. The map h: R, — R defined as h(x) = xInx for all x € Ry, is convex.

Proof. We observe that the second derivative of h exists and /" (x) = 1 > 0 forall x € Ry O

Lemma 1.3. We define a map kg : [0,1] — R as kg(A) = (Ag + A)In(Ag + A) forall A € [0,1] and g € Ry.

Then, the following statements hold true.

(a) k¢(0) =0and ky(1) = gIng and ko(A) < Aglng forall A € [0,1].

(b) kg is a convex map in A.

(c) kg(A)/Ais increasing in A € [0,1].

Proof. We define a Bernoulli random variable X : QO — {g,1} with probability mass function Px(g) £

P{X = g} = A, then we observe that k¢(A) = h(EX).

(@) When A =0, we have X = 1 almost surely, resulting in k¢ (0) = h(EX) = h(1) =0. When A =1, we
have X = f almost surely, resulting in k(1) = h(EX) = h(g) = glng. Applying Jensen inequality
for convex map h, we get k¢(A) = h(EX) <Eh(X) = Aglng forall A € [0,1].

(b) The result follows since kg (A) = (fgjg-\z >0 for all A € [0,1] and f € R;. Alternatively, one can

observe that k¢(A) = h(IEX) where EX = gA + A is a composition of an affine and a convex map,
and hence is convex.

(c) For the convex function kg, we have kg(0) — kg(A) > —Aky(A). Rearranging, we get (Aky(A) —
kg(A))/A? > kg (0) /A% = 0. Recognizing that the left hand side of the previous equation is the first
derivative of k¢(A) /A with respect to A, we get the result.

O
Definition 1.4. KL divergence between two binary distributions is denoted by d(p|q) = D((1—p, p)||(1 —
4,9)) = (1— p)log, 1=F + plog,  for all p,q € [0,1].

Definition 1.5 (Mixture distribution). For A € [0,1] and P,Q € M (X), we define a mixture distribution
PM 2 AP+ AQ € M(X).

Proposition 1.6. For mixing parameter A € [0,1] and P,Q € M(X), the following are true for the first derivative
of mixture distribution P* € M(X) with respect to A at 0.



(a) If D(P||Q) < oo, then the one-sided derivative of D(P*||Q) at A = 0 vanishes, i.e. % ‘)\_OD(PA |Q)=0.

(b) If we exchange the arguments, the criterion is even simpler,i.e. P < Q iff % ’A:OD( Ql|P*) =o.

Proof. Since lim) ;o D(P*||Q) = 0, we note that %’AZOD(PAHQ) = lim, ;o y D(P*[Q).

(a) Since D(P||Q) < o, we have P < Q and we define relative density g = 5—5. From the definition of
KL divergence and definition of k, in Lemma 1.3} we get
1 Al 1 . 1 o ke(A)
TD(PYQ) = Eg [X(x\g +A)In(Ag + A)} = Eq-4—.
Recall that k¢(A) /A < glng is a monotone increasing and bounded map, where EggIng = D(P||Q) <
0. Thus, we can apply the monotone convergence theorem to interchange limits and expectation,
to obtain

1 = . . kg()\) - / _ _
%XD(APJFAQHQ)_]EQ[% < ]_]Eng(o)_]EQ(g—n_o.

(b) If P « Q, then there exists E € ¢(X) such that Q(E) =0 and p = P(E) > 0. Consider the binary
output space Y = {0,1}, and the processing X + Y = 1g(X) where Y : QO — Y. This processing leads
to Markov kernel Py|x : X — M (Y) such that Py|x (1| x) = Ly,cf}. For input distribution Q and

mixture input distribution P?, the corresponding output distributions are
Qv = (1-Q(E),Q(E)) = (1,0), Py = (1-AP(E) — AQ(E),AP(E) + AQ(E)) = (1 - Ap,Ap).

Applying data processing inequality for divergence to this processing kernel Py|y, we get
D(QI[P*) > D(Qy||Py) = d(0]|Ap) = —In(1 - Ap).

It follows that -2 x|, D(Q||PY) =p >0.

If P < Q, then we defme relative density g = gg and observe that InA <In(A + Ag) < A(g—1) from

monotonicity of In and the fact that In(1 + x) < x for each x € R. Dividing by A and assuming A < %

InA
A

we get for some absolute constants ¢y = 1,co =1+ sup, (5

im0+ ag)| <lg-11v ][5 < g1 B2 <ag e

We recall that Egg = 1 < oo It follows that ‘%ln(/_\ + /\g)‘ is Q integrable. Applying dominated
convergence theorem to exchange limits and expectation, we get

lim D(Q||PA)_11m /dQ In(Ag+A) = /thm—ln()Lg+/\ /dQ (1-g)=0.

O

Remark 1. The main message of Proposition [1.6|is that the function A — D(P*||Q) is 0(A) as A — 0. In
fact, in most cases it is quadratic in A.

Exercise 1.7. Let A € [0,1],i € {0,1} and P;,Q; € M(X), to define mixture distribution Q} £
AQ; + AP;. Show that under suitable technical conditions, the following equations hold

dPy
2| p(@bie) =Eqin R - D)

dl dQO
dA}H (Q111Q0) = EqInzp — (p1||p0)+mpl[1_ﬁ}

Lemma 1.8. We observe that Sy = fol x(l—ss)+s ds = Xln(z:(lj)(;l).



Proof. We observe that

S A/1 sds _1/1(x(s—1)—s+s)ds 1 /‘10173/_71+§+ Inx
T lox(1-s5)+s xho x(1—s)+s 1-xJxr v x x x—1
Rearranging the terms, we get the result. O

Proposition 1.9 (KL is locally x? like). For any A € [0,1] and distribution P,Q € M(X) we define mixture
distribution P* £ AP + AQ € M(X). Then,

1 A
hmﬁgﬁ (PM|Q) = = A2(P||Q).

Proof. We recall that f divergence remains unchanged for a shift of type a(x — 1) for any f: (0,00) — R ..
Thus, we observe that for f(x) = xInx — (x — 1), we have

Ds(PIQ) = Eof (45) = D(PIQ)

(a) Applying Fatou’s lemma, observing that f(1) = 0, using the L'Hospital rule to take limits, the fact
that f’(x) = Inx, and definition of x? divergence, we obtain

1!
lir)ﬁi()nf% (PM|Q) —hmmf ]EQf(/\+Ag) > ]EthmfA f(A+7g) = f 2(1)]EQ(g— 1)2= %XZ(P||Q)~

It follows that if x?(P||Q) = co then so is 1 L D(P*||Q). Thus, we can assume that x2(P||Q) < oo
without any loss of generality.

(b) We assume x%(P||Q) < co and from the definition of Sy in Lemma (1.8} we observe that S, = f)
and the integrand of S, is positive and decreasing for x € (0,c0). In particular, we have
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Taking x = A + Ag for g = dQ in the above inequality, we obtain 0 < /\Zf(/\ +Ag) < (g —1)% Since

Eq(g— 1)2 = x2(P||Q) < oo, applying dominated convergence theorem to exchange limit and ex-
pectation, we obtain

lim 5o (A +1g) = Eolim 12 £ +49) = L1 Bolg 17 = J22(PIIQ)
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