
Lecture-21: Local behavior for parametrized family

1 Parametrized family

Consider a statistical experiment P(Θ) ≜ {Pθ ∈M(X) : θ ∈ Θ} for the parameter space Θ ⊆ Rd to be
an open subset. We assume that there exists a measure µ ∈ M(X) such that Pθ ≪ µ for all θ ∈ Θ and
denote the relative density by pθ ≜

dPθ
dµ .

1.1 Fisher information

Definition 1.1 (Fisher matrix). If the map θ 7→ pθ(x) is smooth for each x ∈ X, then we can define score
V ≜∇θ ln pθ(X) and the Fisher information matrix with respect to the parameter θ as

JF(θ)≜ E[VV⊤ | θ]≜ EX∼Pθ
VV⊤.

Lemma 1.2. Under suitable regularity conditions, we have the identity E[V | θ] = 0 and several equivalent
expressions for the Fisher information matrix, such as

JF(θ) = cov[V | θ] = 4
∫
X

dµ∇θ
√

pθ(∇θ
√

pθ)
⊤ = −E[Hessθ(ln pθ(X))] | θ].

Proof. We observe that V =∇θ ln pθ(X) = 1
pθ(X)

∇θ pθ(X).
(a) Under suitable regularity conditions, we can exchange integration and derivative to obtain the fol-

lowing identity

E[V | θ] =
∫
X

dµ(x)pθ(x)∇θ ln pθ(x) =
∫
X

dµ(x)∇θ pθ(x) =∇θ

∫
X

dµ(x)pθ(x) = 0.

(b) Under the same regularity conditions, we obtain V − E[V | θ] = V, and hence we can write

cov(V | θ) = E[(V − E[V | θ])(V − E[V | θ])⊤ | θ] = E[VV⊤ | θ] = JF(θ).

(c) Since V = 1
pθ(X)

∇θ pθ(X), we obtain VV⊤ = 1
pθ(X)2 ∇θ pθ(X)(∇θ pθ(X))⊤. Furthermore, we have

∇θ

√
pθ(x) = 1

2
√

pθ(x)
∇θ pθ(x). Combining these two facts, we obtain

JF(θ) =E[VV⊤ | θ] =
∫
X

dµ(x)
1

pθ(x)
∇θ pθ(x)(∇θ pθ(x))⊤ = 4

∫
X

dµ(x)
(
∇θ

√
pθ(x)

)(
∇θ

√
pθ(x)

)⊤
.

(d) From the definition of Hessian, we can write

[Hessθ ln pθ(X)]ij =
∂

∂θj

[ 1
pθ(X)

∂

∂θi
pθ(X)

]
= − 1

pθ(X)2
∂

∂θj
pθ(X)

∂

∂θi
pθ(X) +

1
pθ(X)

∂2

∂θj∂θi
pθ(X).

Under suitable regularity conditions, we can exchange integration and derivative to obtain the fol-
lowing identity

−E[(Hessθ ln pθ(X))ij | θ] =E[(VV⊤)ij | θ]+
∫
X

dµ(x)
∂2

∂θj∂θi
pθ(x) = (JF(θ))ij +

∂2

∂θj∂θi

∫
X

dµ(x)pθ(x).
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1.2 Local behavior of divergence for parametrized family

The significance of Fisher information matrix arises from the fact that it gauges the local behavior of
divergence for smooth parametric families.

Lemma 1.3. Under suitable technical conditions1,

D(Pθ0∥Pθ0+ξ) =
1
2

ξ⊤ JF(θ0)ξ + o(∥ξ∥2). (1)

Proof. Let Pθ0 ≪ µ for some measure µ ∈M(X) such that there exists relative density pθ0 ≜
Pθ0
µ . We can

write the Taylor series expansion for ln pθ0+ξ(x) for first two terms, in the neighborhood of ln pθ0(x), as

ln pθ0+ξ(x) = ln pθ0(x) + ξ⊤∇θ ln pθ0(x) +
1
2

ξ⊤ Hessθ(ln pθ0(x))ξ + o(∥ξ∥2).

Recall that D(Pθ0∥Pθ0+ξ)≜ EX∼Pθ0
ln

pθ0
(X)

pθ0+ξ (X)
, and the result follows from the fact that E[V | θ0] = 0.

Remark 1. We will establish this fact rigorously later. Property (1) is of paramount importance in statis-
tics. We should remember it as Divergence is locally quadratic on the parameter space, with Hessian given by
the Fisher information matrix.

Exercise 1.4 (KL Divergence for GLM). Consider the Gaussian location model, where the
parametrized distribution for observations is given by Pθ ≜N (θ,Σ).
(a) Show that JF(θ) = Σ−1.
(b) Consider unconstrained parameter space Θ ⊆ Rd, and Gaussians Pθi ≜ N (θi,Σi) for i ∈

{0,1}. Assuming detΣ0 ̸= 0, show that

D(Pθ0∥Pθ1) =
1
2
(θ0 − θ1)

⊤Σ−1
1 (θ0 − θ1) +

1
2

(
lndetΣ1 − lndetΣ0 + tr(Σ−1

1 Σ0 − Id)
)

.

Remark 2. As another example, note that the result that KL divergence is locally like χ2 divergence, is
a special case of Property (1) by considering Pλ = λ̄Q + λP parametrized by λ ∈ [0,1]. In this case,
the Fisher information at λ = 0 is simply χ2(P∥Q). Nevertheless, local behavior of KL divergence of
convex combination of two measures is completely general while the asymptotic expansion (1) holds
under certain regularity conditions.

Exercise 1.5. Let P, Q ∈ M(X) and Θ ≜ [0,1] and define Pθ ≜ θP + θ̄Q ∈ M(X). Show that
limθ↓0 JF(θ) = χ2(P∥Q).

Remark 3. Some useful properties of Fisher information are as follows.

• Reparametrization: It can be seen that if one introduces another parametrization θ̃ ∈ Θ̃ by means
of a smooth invertible map Θ̃ → Θ, then denoting the Jacobian of this map A ≜ dθ

dθ̃
, we can write

the Fisher information matrix for reparametrization as JF(θ̃) = A⊤ JF(θ)A. So we can see that JF
transforms similarly to the metric tensor in Riemannian geometry. This idea can be used to define
a Riemannian metric on the parameter space Θ, called the Fisher-Rao metric.

• Additivity: Suppose we are given a sample of i.i.d. observations X : Ω → Xm under common dis-
tribution Pθ . As such, consider the parametrized family of product distributions

{
P⊗m

θ : θ ∈ Θ
}

,
whose Fisher information matrix is denoted by J⊗m

F (θ). For each θ ∈ Θ, let Pθ ≪ µ for some domi-
nating measure µ ∈M(X), then the relative density is denoted by pθ ≜

d
dµ Pθ . Recall that p⊗m

θ (X) =

∏m
i=1 pθ(Xi), and hence the score for this sample is V = ∇θ ln p⊗m

θ (X) = ∑m
i=1∇θ ln pθ(Xi), and

Hessθ ln p⊗m
θ (X) = ∑m

i=1 Hessθ ln pθ(Xi). From the linearity of expectation, and equivalent expres-
sion for Fisher information, we obtain J⊗m

F (θ) = mJF(θ).
1To illustrate the subtlety here, consider a scalar location family, i.e. pθ(x) = f0(x − θ) for some density f0. In this case, Fisher

information JF(θ0) =
∫ ( f ′0)

2

f0
does not depend on θ0 and is well-defined even for compactly supported f0, provided f0 vanishes at

the endpoints sufficiently fast. But at the same time the left-hand side of Property 1 is infinite for any ξ > 0. Thus, a more general

interpretation for Fisher information is as the coefficient in expansion D(Pθ0∥
1
2 Pθ0 +

1
2 Pθ0+ξ) =

ξ2

8 JF(θ0) + o(ξ2). We will discuss
this in more detail.
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Lemma 1.6 (Matrix inversion). Let A,C be invertible matrices and UCVA−1 has spectral radius smaller than
unity, then

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1.

Proof. If B, D are two invertible matrices then B−1D−1 = (DB)−1, and hence

C−1(C−1 + VA−1U)−1 = (I + VA−1UC)−1, A−1(I + UCVA−1)−1 = (A + UCV)−1.

Further, for any matrix B with spectral radius smaller than unity, we have (I − B)−1 = ∑n∈Z+
Bn, and

(I +VA−1UC)−1 = ∑
n∈Z+

(−VA−1UC)n = I −VA−1 ∑
n∈Z+

(−UCVA−1)nUC = I −VA−1(I +UCVA−1)−1UC.

Pre-multiplying with A−1UC and post-multiplying with VA−1, we obtain

A−1U(C−1 + VA−1U)−1VA−1 = A−1UCVA−1 − A−1UCVA−1(I + UCVA−1)−1UCVA−1

= A−1(I + UCVA−1 − I)(I + UCVA−1)−1 = A−1(I − (I + UCVA−1)−1) = A−1 − (A + UCV)−1.

The result follows by rearranging terms.

Lemma 1.7. Following identities are true for determinants.
(a) For commutative matrices C, D with spectral radius of CD smaller than unity, det(I +CD) = det(I + DC).
(b) Let A be an invertible matrix and y⊤A−1x ⩽ 1, then det(A + xy⊤) = (1 + y⊤A−1x)det(A).

Proof. We will show them separately.
(a) Let ((xi,λi) : i ∈ [d]) be eigenvector and eigenvalue pairs for I + CD, such that (I + CD)xi = λixi

for each i ∈ [d]. Defining matrix X ≜
[
x1 · · · xd

]
and Λ ≜ diag(λ1, . . . ,λd), we obtain

(I + CD)X =
[
λ1x1 . . . λdxd

]
= XΛ.

Pre-multiplying both sides by D, we obtain (I + DC)DX = DXΛ, i.e. (DX,Λ) is the eigenvector
matrix and diagonal eigenvalue matrix for I + DC. In particular, matrices I + CD and I + DC have
same eigenvalues and hence the same determinant.

(b) We observe that A + xy⊤ = A(I + A−1xy⊤). Applying the product property of determinants for
commutative matrices A−1x and y⊤, we obtain

det(A + xy⊤) = det(A)det(I + A−1xy⊤) = det(A)(1 + y⊤A−1x).

Example 1.8. Let the input space X ≜ {0, . . . ,d} and consider a stochastic model Pθ ∈ M(X) that
generates the observation X : Ω → X generated by parameter θ. Since X is discrete, each Pθ is a
probability mass function of the form θx ≜ Pθ(x) for x ∈ X. It follows that the parameter space Θ ≜
M(X). We observe that θ0 − 1 − ∑i∈[d] θi, and hence we can take all derivatives only with respect
to free parameters θ ≜ (θ1, . . . ,θd). In particular, d

dθi
Pθ(x) = 1{x=i} − 1{x=0} for i ∈ [d]. In terms of

unit vectors (ei : i ∈ [d]) and all one vector 1 ≜ ∑d
i=1 ei, we can write ∇θ Pθ(x) = ∑d

i=1 Ixiei − Ix0. We
can write the score as V ≜∇θ ln Pθ(X) = 1

Pθ(X)
∇θ Pθ(X). It follows that

VV⊤ =
1

(Pθ(X))2 (
d

∑
i=1

IXiei − IX0)
2 =

1
θ2

X
(

d

∑
i=1

IXieie⊤i + IX0).

We can write the Fisher information matrix in terms of all one d × 1 vector 1, as

JF(θ)≜ E[VV⊤ | θ] =
d

∑
x=1

1
θx

exe⊤x +
1
θ0

= diag
( 1

θ1
, . . . ,

1
θd

)
+

1
1 − ∑d

i=1 θi
11⊤.

Let D ≜ diag(θ1, . . . ,θd) and α = 1 − 1⊤D1, then (D−1 + α−111⊤)−1 = D − D1(α + 1⊤D1)−11⊤D
by Lemma 1.6, and hence J−1

F (θ) = diag(θ)− θθ⊤. For the determinant, it follows from Lemma 1.7
that det JF(θ) = (1 − θ⊤D−1θ)−1 det(D)−1 = ∏d

i=0
1
θi

.
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Example 1.9 (Location family). In statistics and information theory it is common to talk about
Fisher information of a (single) random variable or a distribution without reference to a parametric
family. In such cases one is implicitly considering a location parameter. Specifically, for any density
p0 on Rd we define a location family of distributions on Rd by setting dPθ(x)≜ p0(x − θ)dx, for all
θ ∈ Rd. Note that JF(θ) here does not depend on θ. For this special case, we will adopt the standard
notation. Let X ∼ p0, then

J(X)≜ J(p0)≜ EX∼p0 [(∇ ln p0(X))(∇ ln p0(X))⊤] = −EX∼p0 [Hess(ln p0(X))],

where the second equality requires applicability of integration by parts.
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