Lecture-21: Local behavior for parametrized family

1 Parametrized family

Consider a statistical experiment P (@) £ {Py € M(X): 0 € ®} for the parameter space ® C R to be

an open subset. We assume that there exists a measure y € M(X) such that Py < p for all § € ® and

denote the relative density by py = %9.

1.1 Fisher information

Definition 1.1 (Fisher matrix). If the map 6 — py(x) is smooth for each x € X, then we can define score
V £ VyInpg(X) and the Fisher information matrix with respect to the parameter 6 as

Jr(6) £E[VVT | 6] £ Ex.p,VVT,

Lemma 1.2. Under suitable reqularity conditions, we have the identity E[V | 6] = 0 and several equivalent
expressions for the Fisher information matrix, such as

Ji(0) = cov[V | 6] =4 [ duVe/pa(Vay/Pa) T = —E[Hessa(Inpa(X))] | 6]

Proof. We observe that V = Vylnpy(X) = mVng(X).

(a) Under suitable regularity conditions, we can exchange integration and derivative to obtain the fol-
lowing identity

B[V |6] = [ dn(x)po(x)Velnpo(x) = [ du(x)Vape(x) = Vo [ dn(x)ps(x) =
(b) Under the same regularity conditions, we obtain V — E[V | 8] = V, and hence we can write
cov(V [0) =E[(V —E[V [6)(V —E[V[6])" 6] =E[VVT | 6] = Jp(6).

(c) Since V = ( )Vgpg( ), we obtain VVT = mvepg(X)(Vgpg(X))T. Furthermore, we have
Vo/pe(x) = 5 \/m Vgpe(x). Combining these two facts, we obtain

Te(©) = EIVVT 161 = [ dp()—=eVapa() (Tona()) =4 [ dn(0)(Tay/po(0) (T /o))

(d) From the definition of Hessian, we can write

0 1 9 1 9 ) 1 9
[Hesselnpe(X)]i]' = 879] {mafeipe(x)] = —WT@PG(X)EEP&(X) + mmpe(x)‘

Under suitable regularity conditions, we can exchange integration and derivative to obtain the fol-
lowing identity

2 2
[ (Hessoln po (X)) 0] =EIVV )y 0]+ [ () 3 pox) = Ur(@))y + g [ Auopo(x)

O



1.2 Local behavior of divergence for parametrized family

The significance of Fisher information matrix arises from the fact that it gauges the local behavior of
divergence for smooth parametric families.

Lemma 1.3. Under suitable technical conditiondl}

D(Py|Pay) = 2& " Je(00)E + (1P, )

a P

Proof. Let Py, < p for some measure y € M (X) such that there exists relative density py, % We can

write the Taylor series expansion for In pg ,.z(x) for first two terms, in the neighborhood of In pg, (x), as

Inpg,1&(x) = Inpg, (x) + &' Volnpg, (x) + %CT Hessg (In pg, (x))& + o(]|&[|).-

Poy (X)
Pog+¢(X)

Recall that D(Py|| Py, +¢) = Ex Py, IN , and the result follows from the fact that E[V | 6p] =0. O
Remark 1. We will establish this fact rigorously later. Property (1) is of paramount importance in statis-
tics. We should remember it as Divergence is locally quadratic on the parameter space, with Hessian given by
the Fisher information matrix.

Exercise 1.4 (KL Divergence for GLM). Consider the Gaussian location model, where the

parametrized distribution for observations is given by Py £ N (6,%).

(a) Show that Jr(f) = X1

(b) Consider unconstrained parameter space ® C RY, and Gaussians Py, & N(6;,%;) for i €
{0,1}. Assuming detX # 0, show that

1 _ 1 _
D(Pgy [ Po,) = 5 (60 - 61) "X (8o — 61) + 5 (1nc1etz1 — IndetXo + tr(X; "X — Id)).

Remark 2. As another example, note that the result that KL divergence is locally like x? divergence, is
a special case of Property (I) by considering P* = AQ + AP parametrized by A € [0,1]. In this case,
the Fisher information at A = 0 is simply x*(P||Q). Nevertheless, local behavior of KL divergence of
convex combination of two measures is completely general while the asymptotic expansion (1)) holds
under certain regularity conditions.

Exercise 1.5. Let P,Q € M(X) and ® = [0,1] and define Py = 6P + Q € M(X). Show that
limg, Jr(0) = x*(P||Q).

Remark 3. Some useful properties of Fisher information are as follows.

 Reparametrization: It can be seen that if one introduces another parametrization § € ® by means

of a smooth invertible map ® — @, then denoting the Jacobian of this map A = %,
the Fisher information matrix for reparametrization as Jr(8) = A" Jp(6)A. So we can see that Jr
transforms similarly to the metric tensor in Riemannian geometry. This idea can be used to define

a Riemannian metric on the parameter space O, called the Fisher-Rao metric.

we can write

¢ Additivity: Suppose we are given a sample of i.i.d. observations X : (3 — X™ under common dis-
tribution Py. As such, consider the parametrized family of product distributions {P;”" : 6 € ©},
whose Fisher information matrix is denoted by J&" (). For each 6 € ©, let Py < y for some domi-
nating measure y € M (X), then the relative density is denoted by pg = %Pg. Recall that p5™ (X) =
[T/ pe(X;), and hence the score for this sample is V = Vylnpy"™ (X) = ¥, Vglnpy(X;), and
HessgInpg™ (X) = LI HessgIn pg(X;). From the linearity of expectation, and equivalent expres-
sion for Fisher information, we obtain J£"(6) = mJr(6).

ITo illustrate the subtlety here, consider a scalar location family, i.e. pg(x) = fo(x — 8) for some density fo. In this case, Fisher
712
information Jr(6p) = [ % does not depend on 6 and is well-defined even for compactly supported fy, provided fj vanishes at

the endpoints sufficiently fast. But at the same time the left-hand side of Property [i]is infinite for any & > 0. Thus, a more general

interpretation for Fisher information is as the coefficient in expansion D (P, || %Pgo + %Pgo+§) = % Je(60) + 0(&?). We will discuss
this in more detail.



Lemma 1.6 (Matrix inversion). Let A,C be invertible matrices and UCVA ™ has spectral radius smaller than
unity, then
(A+ucv)t=A1t-aAtuct+vatuytval

Proof. If B, D are two invertible matrices then B 1Dp-1= (DB )’1, and hence
clc'+valu)y =1 +vAa~luc)t, AN I+ ucvA H ' =(A+ucv)!
Further, for any matrix B with spectral radius smaller than unity, we have (I — B) ™' =Y, .» . B", and

(I+VATIUC) ™ = ) (-VAT'UC)"=1-VA™! }_ (-UCVA™)"UC=1I-VA~(I+UCVA~!)~UC.
n€Z+ HEZ+

Pre-multiplying with A~1UC and post-multiplying with VA~!, we obtain

ATtu(Cct+valu)y lvAT = ATl UCVAT — ATt ucVAT Y (T + UCcvA Y T tucvA T
=AYI+ucvA - nI+ucvA H =AY 1 -(I+UcvA )y ) =A"1 - (A4 ucv)!

The result follows by rearranging terms. O

Lemma 1.7. Following identities are true for determinants.
(a) For commutative matrices C, D with spectral radius of CD smaller than unity, det(I + CD) = det(I + DC).
(b) Let A be an invertible matrix and y" A= x < 1, then det(A +xy') = (1 +y" A~ 1x)det(A).

Proof. We will show them separately.
(@) Let ((x;,A;) :i € [d]) be eigenvector and eigenvalue pairs for [ + CD, such that (I + CD)x; = A;x;
for each i € [d]. Defining matrix X = [x; -+ x4] and A £ diag(A4,...,A4), we obtain

(I+CD)X = [/\1)(1 Adxd] = XA.

Pre-multiplying both sides by D, we obtain (I + DC)DX = DXA, i.e. (DX, A) is the eigenvector
matrix and diagonal eigenvalue matrix for I + DC. In particular, matrices I + CD and I + DC have
same eigenvalues and hence the same determinant.

(b) We observe that A+ xy' = A(I+ A~'xy"). Applying the product property of determinants for
commutative matrices A~'x and y ", we obtain

det(A+xy') =det(A)det(I+ A lxy") =det(A)(1+y " A 1x).

Example 1.8. Let the input space X £ {0,...,d} and consider a stochastic model Py € M (X) that
generates the observation X : () — X generated by parameter 6. Since X is discrete, each Py is a

probability mass function of the form 6y = Py(x) for x € X. It follows that the parameter space @ =
M(X). We observe that 6y — 1 — Yic(40;, and hence we can take all derivatives only with respect

to free parameters 6 = (6y,...,0;). In partlcular, d—Gin( ) = Lix—iy — Liz—q) for i € [d]. In terms of
unit vectors (¢; : i € [d]) and all one vector 1 £ 2?11 e;, we can write VgPy(x) = 2?11 Lie; — L. We
can write the score as V 2 VyIn Py(X) = #X)V(;PG (X). It follows that

vyl = ZIXZe, Ixo)? —92 Zlmeze + Ixo)-

We can write the Fisher information matrix in terms of all one d x 1 vector 1, as

1 1 1
0) £ E[VV' |6 = exe, + — —d1a +——11".
]F( ) [ | Zex X 6o g( ed) 1_2?:19i
Let D £ diag(6y,...,0;) and « =1 —1"D1, then (D! 4+a11")"' =D - D1(a +1"D1)"'1'D
by Lemma and hence [ 1(6) = diag(6) — 66 . For the determinant, it follows from Lemma
that detJr(9) = (10" D~10)'det(D) ' =T]L, 9



Example 1.9 (Location family). In statistics and information theory it is common to talk about
Fisher information of a (single) random variable or a distribution without reference to a parametric
family. In such cases one is implicitly considering a location parameter. Specifically, for any density
po on R? we define a location family of distributions on IR by setting dPy(x) £ po(x — 8)dx, for all
0 € RY. Note that Jr(6) here does not depend on 6. For this special case, we will adopt the standard
notation. Let X ~ py, then

J(X) £ J(po) £ Exup, [(VInpo (X)) (VInpo(X)) '] = ~Exwp [Hess(Inpo(X))],

where the second equality requires applicability of integration by parts.
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