Lecture-22: f-divergences for parametrized families

1 f-divergences in parametric families: Fisher information

We have already previewed the fact that in parametric families of distributions, the Hessian of the KL
divergence turns out to coincide with the Fisher information.

Example 1.1 (GLM). For one-dimensional GLM with unit variance, the observation distribution
P = N(t1) fort € ®=X2TR. Let u € M(X) be the Lebesgue measure and for all (x,t) € X x @,
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From the definition of f-divergence and the fact that an p (X) = e~ 2(P=21X) e get
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(a) Recall that D(P||Py) = Ex~p,Inj an. ( ), and hence D(P;||Py) = —1Ex.p, (2 — 2tX) = %
(b) Recall that TV(P;, Py) =1 — [y dx pt(x) A po(x)). For t > 0, we observe that p;(x) < po(x) iff
x < % In this case,
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For t < 0, we observe that pt(x) < po(x) iff x > £, and lim;_,o 1TV (P, Py) = 7\/%7{
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(c) Recall that x*(P¢||Py) = [y du(x ( — 1, and hence
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Dividing by #? on both sides and taking limit ¢ — 0, we obtain lim; g tlz X2 (Pi||Po) = 1.
(d) Recall that H*(P;, Py) =2 — 2 [ dx+/p:(x)po(x), and hence
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Dividing by #? on both sides and taking limit ¢ — 0, we obtain lim;_, tlez(Pt,Po) = %.

(e) Recall that LC(P;, ) =1 [ dx% il =7l dx%, and hence
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Dividing by > on both sides and taking limit t — 0, exchanging limits and integral using dom-
inated convergence theorem, we obtain lim;_, t%LC(Pt,PO) = %.



We can summarize these results as
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We can see that with the exception of TV, other f-divergences behave quadratically under small
displacement t — 0. This turns out to be a general fact, and furthermore the coefficient in front of >
is given by the Fisher information at t = 0.

Definition 1.2 (Regular single-parameter families). Fix T > 0, parameter space @ = [0,7), observa-
tion space X, and a stochastic model P(®) £ {P; € M(X) : t € @}. We define the following types of
conditions that we call regularity at t = 0.

(a) P < p for afixed p € M(X), and hence there exists relative density p; = f which is a measurable
map (t,x) — pi(x) € Ry.
(b) There exists a measurable function (s, x) — ;bs( ) forall (s, x) € © x X, such that for y-almost every x

we have [ |ps(x)|ds < coand pi(x) = po(x) + fo ps(x)ds for every t € @. Furthermore, for y-almost
every x we have limy | p:(x) = po(x).

(c) We have p;(x) = 0 whenever py(x) = 0 and, furthermore, [ du(x)sup,.q (’;‘0((’( ))) < 0.

(d) There exists a measurable function (s x) > s (x ) for all (s, x) €0 x DC such that for y-almost every
xwehavef®|h x)|ds < coand hy(x £ /pe(x) = /polx —|—f0 x)ds for every t € ©
Furthermore, for p-almost every x we have hmt 107 (x) = ho(x).

(e) The family of functions { (/:(x))? : t € ®} is uniformly p-integrable.

Remark 1. Recall that the uniform integrability condition (g} is implied by the following stronger but
easily verifiable condition

/d],t x) sup (7 (x))? < 0.
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Recall that /;(x) = dt pt(x) and Fisher information Jp(t) =4 [, du(x)(/(x))* under suitable regular-
ity conditions. If one also assumes the continuous d1fferent1ab111ty of ht then the uniform integrability
condition becomes equivalent to the continuity of the Fisher information t — J(t).

Lemma 1.3 (Taylor’s integral remainder). Let f : R — R be a function that has k 4 1 continuous derivatives
in some neighborhood U of x = a, then for any x € U

flx)= if(i) (a)(x%'a)i n /xf(kﬂ)(t)(xk,t)kdt.
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Proof. We will show this by induction on k. The base case of k = 0 holds true from the fundamental
theorem of calculus, that implies
X
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We assume that the hypothesis is true for k, and using the hypothesis and integration by parts
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Thus, we have shown that the inductive step holds true.
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Theorem 1.4. Consider T > 0, the parameter space ® = [0,7), and observation space X. If the family P(®) £
{P: € M(X) : t € O} satisfies the conditions (@), [B), and (J) in Definition[1.2} then

02 [au P <o, 2RI = JrOF +o(), DR = JIrOF +o(2).



Proof. We will show this in three parts.
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We can write the score V = V;Inp;(X) = @

(%)’ and hence the Fisher information matrix is

Je(t) £ ExopVVT = /xdu(x) pelx)”

pe(x)?

pi(x)

Further, we can apply dominated convergence theorem to exchange limit and integral to obtain
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From Condition (d), we see that for any x € {z € X: pg(z) =0} we must have p;(x) = 0 and

thus p¢(x) = 0 for all t € ®. Hence, we may restrict all integrals below to Py almost sure subset

Condition (d) implies that sup, g is p integrable, and hence Jr(t) < oo for all parameters t € ©.

{x € X : pp(x) > 0}, on which the ratio W is well-defined. Consequently, we have

p(x)—po(x)
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By the continuity assumption in (b) we have lim; = po(x) for every x. Furthermore,
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<supyeq (Pr))® , which is p-integrable by (). This implies that

we also have
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For t € ©, we can apply Fubini theorem to exchange integrals, and write
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Applying the dominated convergence theorem to exchange limit and the integral in (I}, we obtain
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We next show that for any f-divergence with twice continuously differentiable f without assum-
ing (d),
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Without any loss of generality, we can assume f'(1) = f(1) =0 for the f in definition of f-divergence.
This is due to the fact that Dg = Dy for g(x) £ f(x) —c(x —1)and g'(1) =0 for c = f'(1). Applying
Taylor integral remainder (Lemma to function f for k =1 terms in the neighborhood of a =1,

evaluated at x = 1 + u, and substituting z = (tll) ,

we get

1
F1+u)=F(1) +uf'(1) + uz/o (1—2)f"(1 + uz)dz.
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integral remainder of f(1 + u) in the neighborhood of 1, we can write

Taking u = , we recognize that (1+ u) = ZTI%(X) Substituting this u in the Taylor

1 1 dp; 1 " {(X) = po(X H(X) = po(X)\2
2D (PP = Exen (G5 (X)) = [ dz(1-2)Exen, [f (14224 p>0 : XP)O< >)(P<t;O( §§< Y.
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almost sure limit from the smoothness of f,

From (B), we observe that lim; o 2 almost surely, and thus we have the following
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Applying Fatou’s lemma and the above limit to the expression for %zD #(P¢||P), we obtain (2). If (1 —

2
z)f" (1 +zF ’();)Oz)’?())(x)) (p t<i2&§o>(x)> is Py-intgerable, then we can apply dominated convergence

theorem to obtain
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For f(x) £ xInx we have f(x) = 1, and hence

1 H(X) — +(X) — po 2 91(X)\ 2
(-2 1+ PR (M) <o (55)"

Condition (c) implies that right hand side is Py integrable and hence the result follows.
O

Remark 2. Theorem [1.4] can be extended to the case of multi-dimensional parameters in the following
fashion. Recall that the Fisher information matrix at parameter § € R¥ can be defined as

J6(@) 2 [ dp(0)(Tor/pa(x)) (Voo po()".

We can derive x2(Py[|Po) = 67 J£(0)6 + o(||6]|*) and D(Py[|Po) = 367 J£(0)6 + o([|6]?).
Remark 3. Theorem [1.4] applies to many cases, e.g. to smooth subfamilies of exponential families, for
which one can take y = Py and po(x) = 1, but it is not sufficiently general.

Example 1.5 (Location families with compact support). We say that family P; is a scalar location
family if X =R, u is the Lebesgue measure and p;(x) = po(x — t). For & > —1, consider the following
definition of py(x) for all x € X,

po(x) 2 Cax*1g 17 (x) + Ca(2 — x)* 1 (),

(Pr(x)) (Po(x—1))

with C, chosen appropriately from normalization. In this case, ()~ = SUPic(02) EJPOT, and

we observe that condition (d) is not satisfied. Further both x*(P:||Py) and D(P;||Py) are infinite for
t >0, since Py £ Py. But Jp(0) < co whenever a > 1 and thus one expects that a certain remedy
should be possible. Indeed, one can compute those f-divergences that are finite for P; « Py and
find that for &« > 1 they are quadratic in ¢. In particular,

1
H?(Py, Po) = O () 10,1y () + O(£In )1 fyq) + O(£2)1 3,00 ().

H?(P;, Py) can be computed directly, or from a more general results of [221, Theorem VI.1.1 For a
relation between Hellinger and Fisher information see also (VL5).

Remark 4. The previous example suggests that quadratic behavior as t | 0 can hold even when P; & P,
which is the case handled by the next (more technical) result. One can verify that condition () is indeed
satisfied for all # > 1 in the previous example, thus establishing the quadratic behavior. Also note that
the stronger uniform integrability condition only applies to a > 2.

Theorem 1.6. Given a family of distributions {P; : t € [0,7)} satisfying the conditions (a), (d), and (€) of Defi-
nition[1.2} we have
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K2 (BuBo) = P22 (Jr(0) + =2 4(0)) +o(), forall e € (0,1) Hz(pt,po)z%p(o)ﬂ(tz),

where Jp(0) = 4 [ hidu < oo is the Fisher information and J*(0) = [ 11y _oydp is called the Fisher defect at
t=0.

IStatistical significance of this calculation is that if we were to estimate the location parameter ¢ from 7 i.i.d. observations, then
precision 4; of the optimal estimator up to constant factors is given by solving H( Py, Pp) =< %, cf. [221, Chapter VI]. For a« <1 we

have d;; < n~1/(1+4) which is notably better than the empirical mean estimator (attaining precision of only n~1/2). For a = 1/2
this fact was noted by D. Bernoulli in 1777 as a consequence of his (newly proposed) maximum likelihood estimation.
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