
Lecture-22: f -divergences for parametrized families

1 f -divergences in parametric families: Fisher information

We have already previewed the fact that in parametric families of distributions, the Hessian of the KL
divergence turns out to coincide with the Fisher information.

Example 1.1 (GLM). For one-dimensional GLM with unit variance, the observation distribution
Pt ≜N (t,1) for t ∈ Θ = X≜ R. Let µ ∈M(X) be the Lebesgue measure and for all (x, t) ∈ X× Θ,

pt(x)≜
dPt

dµ
(x) =

1√
2π

e−
1
2 (x−t)2

.

From the definition of f -divergence and the fact that dPt
dP0

(X) = e−
1
2 (t

2−2tX), we get

D f (Pt∥P0) = EX∼P0 f
( dPt

dP0
(X)

)
= EX∼P0 f

(
e−

1
2 (t

2−2tX)
)

.

(a) Recall that D(Pt∥P0) = EX∼Pt ln dPt
dP0

(X), and hence D(Pt∥P0) = − 1
2 EX∼Pt(t

2 − 2tX) = t2

2 .
(b) Recall that TV(Pt, P0) = 1 −

∫
X

dx(pt(x) ∧ p0(x)). For t > 0, we observe that pt(x) < p0(x) iff
x < t

2 . In this case,

lim
t→0

1
t

TV(Pt, P0) = lim
t→0

1
t
(1 −

∫
x< t

2

dPt(x)−
∫

x> t
2

dP0(x)) = lim
t→0

1
t

∫ t
2

− t
2

dP0(x) =
1√
2π

.

For t < 0, we observe that pt(x) < p0(x) iff x > t
2 , and limt→0

1
t TV(Pt, P0) = − 1√

2π
.

(c) Recall that χ2(Pt∥P0) =
∫
X

dµ(x) p2
t (X)

p0(X)
− 1, and hence

χ2(Pt∥P0) = −1 +
1√
2π

∫
R

dxe−(x−t)2+ 1
2 x2

= −1 +
et2

√
2π

∫
R

dxe−
1
2 (x−2t)2

= et2 − 1.

Dividing by t2 on both sides and taking limit t → 0, we obtain limt→0
1
t2 χ2(Pt∥P0) = 1.

(d) Recall that H2(Pt, P0) = 2 − 2
∫
X

dx
√

pt(x)p0(x), and hence

H2(Pt, P0) = 2 − 2√
2π

∫
X

dxe−
1
4 ((x−t)2+x2) = 2 − 2e−

t2
8

√
2π

∫
X

dxe−
1
2 (x− t

2 )
2
= 2(1 − e−

t2
8 ).

Dividing by t2 on both sides and taking limit t → 0, we obtain limt→0
1
t2 H2(Pt, P0) =

1
4 .

(e) Recall that LC(Pt, P0) =
1
2

∫
X

dx (pt(x)−p0(x))2

pt(x)+p0(x) = 1 − 2
∫
X

dx pt(x)p0(x)
pt(x)+p0(x) , and hence

LC(Pt, P0) = 1 − 2√
2π

∫
X

dxe−
x2
2

etx

etx + e
t2
2

=
1√
2π

∫
X

dxe−
x2
2

e
t2
2 − etx

e
t2
2 + etx

.

Dividing by t2 on both sides and taking limit t → 0, exchanging limits and integral using dom-
inated convergence theorem, we obtain limt→0

1
t2 LC(Pt, P0) =

1
4 .
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We can summarize these results as

D(Pt∥P0) =
t2

2
+ o(t2), TV(Pt, P0) =

|t|√
2π

+ o(t), χ2(Pt∥P0) = t2 + o(t2),

H2(Pt, P0) =
t2

4
+ o(t2), LC(Pt, P0) =

t2

4
+ o(t2), .

We can see that with the exception of TV, other f -divergences behave quadratically under small
displacement t → 0. This turns out to be a general fact, and furthermore the coefficient in front of t2

is given by the Fisher information at t = 0.

Definition 1.2 (Regular single-parameter families). Fix τ > 0, parameter space Θ ≜ [0,τ), observa-
tion space X, and a stochastic model P(Θ) ≜ {Pt ∈M(X) : t ∈ Θ}. We define the following types of
conditions that we call regularity at t = 0.
(a) Pt ≪ µ for a fixed µ ∈M(X), and hence there exists relative density pt ≜

dPt
dµ which is a measurable

map (t, x) 7→ pt(x) ∈ R+.
(b) There exists a measurable function (s, x) 7→ ṗs(x) for all (s, x)∈ Θ×X, such that for µ-almost every x

we have
∫

Θ | ṗs(x)|ds < ∞ and pt(x) = p0(x)+
∫ t

0 ṗs(x)ds for every t ∈ Θ. Furthermore, for µ-almost
every x we have limt↓0 ṗt(x) = ṗ0(x).

(c) We have ṗt(x) = 0 whenever p0(x) = 0 and, furthermore,
∫
X

dµ(x)supt∈Θ
( ṗt(x))2

p0(x) < ∞.

(d) There exists a measurable function (s, x) 7→ ḣs(x) for all (s, x) ∈ Θ ×X, such that for µ-almost every
x we have

∫
Θ

∣∣ḣs(x)
∣∣ds < ∞ and ht(x)≜

√
pt(x) =

√
p0(x) +

∫ t
0 ḣs(x)ds for every t ∈ Θ

Furthermore, for µ-almost every x we have limt↓0 ḣt(x) = ḣ0(x).
(e) The family of functions

{
(ḣt(x))2 : t ∈ Θ

}
is uniformly µ-integrable.

Remark 1. Recall that the uniform integrability condition (e) is implied by the following stronger but
easily verifiable condition ∫

X
dµ(x)sup

t∈Θ
(ḣt(x))2 < ∞.

Recall that ḣt(x) = d
dt

√
pt(x) and Fisher information JF(t) = 4

∫
X

dµ(x)(ḣt(x))2 under suitable regular-
ity conditions. If one also assumes the continuous differentiability of ht then the uniform integrability
condition becomes equivalent to the continuity of the Fisher information t 7→ JF(t).

Lemma 1.3 (Taylor’s integral remainder). Let f : R → R be a function that has k + 1 continuous derivatives
in some neighborhood U of x = a, then for any x ∈ U

f (x) =
k

∑
i=0

f (i)(a)
(x − a)i

i!
+

∫ x

a
f (k+1)(t)

(x − t)k

k!
dt.

Proof. We will show this by induction on k. The base case of k = 0 holds true from the fundamental
theorem of calculus, that implies

f (x) = f (a) +
∫ x

a
f ′(t)dt.

We assume that the hypothesis is true for k, and using the hypothesis and integration by parts

f (x) =
k

∑
i=0

f (i)(a)
(x − a)i

i!
− f (k+1)(t)

(x − t)k+1

(k + 1)!

∣∣∣t=x

t=a
+

∫ x

a
f (k+2)(t)

(x − t)k+1

(k + 1)!
dt

=
k+1

∑
i=0

f (i)(a)
(x − a)i

i!
+

∫ x

a
f (k+2)(t)

(x − t)k+1

(k + 1)!
dt.

Thus, we have shown that the inductive step holds true.

Theorem 1.4. Consider τ > 0, the parameter space Θ ≜ [0,τ), and observation space X. If the family P(Θ) ≜
{Pt ∈M(X) : t ∈ Θ} satisfies the conditions (a), (b), and (c) in Definition 1.2, then

JF(t)≜
∫
X

dµ(x)
( ṗt(x))2

pt(x)
< ∞, χ2(Pt∥P0) = JF(0)t2 + o(t2), D(Pt∥P0) =

1
2

JF(0)t2 + o(t2).
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Proof. We will show this in three parts.
(a) We can write the score V ≜∇t ln pt(X) = ṗt(X)

pt(X)
, and hence the Fisher information matrix is

JF(t)≜ EX∼Pt VVT =
∫
X

dµ(x)
ṗt(x)2

pt(x)
.

Condition (c) implies that supt∈Θ
ṗt(x)2

pt(x) is µ integrable, and hence JF(t)< ∞ for all parameters t ∈ Θ.
Further, we can apply dominated convergence theorem to exchange limit and integral to obtain

JF(0) =
∫
X

dµ(x) ṗ0(x)2

p0(x) .
(b) From Condition (c), we see that for any x ∈ {z ∈ X : p0(z) = 0} we must have ṗt(x) = 0 and

thus pt(x) = 0 for all t ∈ Θ. Hence, we may restrict all integrals below to P0 almost sure subset

{x ∈ X : p0(x) > 0}, on which the ratio (pt(x)−p0(x))2

p0(x) is well-defined. Consequently, we have

1
t2 χ2(Pt∥P0) =

∫
X

dµ(x)
1

p0(x)

( pt(x)− p0(x)
t

)2
. (1)

By the continuity assumption in (b) we have limt→0
pt(x)−p0(x)

t = ṗ0(x) for every x. Furthermore,

we also have
∣∣∣ ṗu(x) ṗv(x)

p0(x)

∣∣∣⩽ supt∈Θ
( ṗt(x))2

p0(x) , which is µ-integrable by (c). This implies that

∫
X

dµ(x)
ṗu(x) ṗv(x)

p0(x)
= EX∼P0

ṗu(X) ṗv(X)

p0(X)2 < ∞.

For t ∈ Θ, we can apply Fubini theorem to exchange integrals, and write∫ t

0
du

∫ t

0
dvEX∼P0

ṗu(X) ṗv(X)

p0(X)2 = EX∼P0

(∫ t

0
du

ṗu(X)

p0(X)

)2
= EX∼P0

( pt(X)− p0(X)

p0(X)

)2
< ∞.

Applying the dominated convergence theorem to exchange limit and the integral in (1), we obtain

lim
t→0

1
t2 χ2(Pt∥P0) =

∫
X

dµ(x)
ṗ0(x)2

p0(x)
= JF(0).

(c) We next show that for any f -divergence with twice continuously differentiable f without assum-
ing (c),

liminf
t↓0

1
t2 D f (Pt∥P0)⩾

f ′′(1)
2

JF(0). (2)

Without any loss of generality, we can assume f ′(1) = f (1) = 0 for the f in definition of f -divergence.
This is due to the fact that Dg = D f for g(x)≜ f (x)− c(x − 1) and g′(1) = 0 for c = f ′(1). Applying
Taylor integral remainder (Lemma 1.3) to function f for k = 1 terms in the neighborhood of a = 1,
evaluated at x = 1 + u, and substituting z ≜ (t−1)

u , we get

f (1 + u) = f (1) + u f ′(1) + u2
∫ 1

0
(1 − z) f ′′(1 + uz)dz.

Taking u ≜ (pt(X)−p0(X))
p0(X)

, we recognize that (1 + u) = dPt
dP0

(X). Substituting this u in the Taylor
integral remainder of f (1 + u) in the neighborhood of 1, we can write

1
t2 D f (Pt∥P0) =

1
t2 EX∼P0 f

( dPt

dP0
(X)

)
=

∫ 1

0
dz(1− z)EX∼P0

[
f ′′
(

1+ z
pt(X)− p0(X)

p0(X)

)( pt(X)− p0(X)

tp0(X)

)2
]

.

From (b), we observe that limt↓0
pt(X)−p0(X)

tp0(X)
= ṗ0(X)

p0(X)
almost surely, and thus we have the following

almost sure limit from the smoothness of f ,

lim
t↓0

f ′′
(

1 + z
pt(X)− p0(X)

p0(X)

)( pt(X)− p0(X)

tp0(X)

)2
= f ′′(1)

( ṗ0(X)

p0(X)

)2
.
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Applying Fatou’s lemma and the above limit to the expression for 1
t2 D f (Pt∥P0), we obtain (2). If (1−

z) f ′′
(

1 + z pt(X)−p0(X)
p0(X)

)(
pt(X)−p0(X)

tp0(X)

)2
is P0-intgerable, then we can apply dominated convergence

theorem to obtain

liminf
t↓0

1
t2 D f (Pt∥P0) =

f ′′(1)
2

JF(0).

For f (x)≜ x ln x we have f ′′(x) = 1
x , and hence

(1 − z) f ′′
(

1 + z
pt(X)− p0(X)

p0(X)

)( pt(X)− p0(X)

tp0(X)

)2
⩽ sup

t∈Θ

( ṗt(X)

p0(X)

)2
.

Condition (c) implies that right hand side is P0 integrable and hence the result follows.

Remark 2. Theorem 1.4 can be extended to the case of multi-dimensional parameters in the following
fashion. Recall that the Fisher information matrix at parameter θ ∈ Rd can be defined as

JF(θ)≜
∫
X

dµ(x)(∇θ

√
pθ(x))(∇θ

√
pθ(x))T .

We can derive χ2(Pθ∥P0) = θT JF(0)θ + o(∥θ∥2) and D(Pθ∥P0) =
1
2 θT JF(0)θ + o(∥θ∥2).

Remark 3. Theorem 1.4 applies to many cases, e.g. to smooth subfamilies of exponential families, for
which one can take µ = P0 and p0(x)≜ 1, but it is not sufficiently general.

Example 1.5 (Location families with compact support). We say that family Pt is a scalar location
family if X=R, µ is the Lebesgue measure and pt(x) = p0(x− t). For α >−1, consider the following
definition of p0(x) for all x ∈ X,

p0(x)≜ Cαxα
1[0,1](x) + Cα(2 − x)α

1[1,2](x),

with Cα chosen appropriately from normalization. In this case, ( ṗt(x))2

p0(x) = supt∈[0,2)
(p′0(x−t))2

p0(x) , and

we observe that condition (c) is not satisfied. Further both χ2(Pt∥P0) and D(Pt∥P0) are infinite for
t > 0, since Pt ̸≪ P0. But JF(0) < ∞ whenever α > 1 and thus one expects that a certain remedy
should be possible. Indeed, one can compute those f -divergences that are finite for Pt ̸≪ P0 and
find that for α > 1 they are quadratic in t. In particular,

H2(Pt, P0) = Θ(t1+α)1[0,1)(α) + Θ(t2 ln
1
t
)1{α=1} + Θ(t2)1(1,∞)(α).

H2(Pt, P0) can be computed directly, or from a more general results of [221, Theorem VI.1.1]1. For a
relation between Hellinger and Fisher information see also (VI.5).

Remark 4. The previous example suggests that quadratic behavior as t ↓ 0 can hold even when Pt ̸≪ P0,
which is the case handled by the next (more technical) result. One can verify that condition (e) is indeed
satisfied for all α > 1 in the previous example, thus establishing the quadratic behavior. Also note that
the stronger uniform integrability condition only applies to α > 2.

Theorem 1.6. Given a family of distributions {Pt : t ∈ [0,τ)} satisfying the conditions (a), (d), and (e) of Defi-
nition 1.2, we have

χ2(Pt∥P0) = t2ϵ̄2
(

JF(0) +
1 − 4ϵ

ϵ
J#(0)

)
+ o(t2), for all ϵ ∈ (0,1) H2(Pt, P0) =

t2

4
JF(0) + o(t2),

where JF(0) = 4
∫

ḣ2
0dµ < ∞ is the Fisher information and J#(0) =

∫
ḣ2

01{h0=0}dµ is called the Fisher defect at
t = 0.

1Statistical significance of this calculation is that if we were to estimate the location parameter t from n i.i.d. observations, then
precision δ∗n of the optimal estimator up to constant factors is given by solving H2(Pδ∗n , P0)≍ 1

n , cf. [221, Chapter VI]. For α < 1 we
have δ∗n ≍ n−1/(1+α) which is notably better than the empirical mean estimator (attaining precision of only n−1/2). For α = 1/2
this fact was noted by D. Bernoulli in 1777 as a consequence of his (newly proposed) maximum likelihood estimation.
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