
Lecture-23: Variational representation of divergences

1 Variational representation of f -divergences

Theorem 1.1. Let X : Ω → X be a random variable on (Ω,F) and P, Q ∈ M(X). Given finite partition E ≜
{E1, . . . , En} ⊆ F of Ω, we define the distribution PE ∈ M([n]) by PE (i) ≜ P(Ei) and QE (i) ≜ Q(Ei) for all
i ∈ [n]. Then

D f (P∥Q) = sup
E⊆F:E finite partition of Ω

D f (PE∥QE ).

Proof. Let P, Q ∈M(X). If P ̸≪ Q, then D f (P∥Q) = ∞, and there exists E ∈F such that P(E)> 0= Q(E).
For finite partition E ≜ (E, Ec), we have D f (PE∥QE ) = ∞.

Therefore, we can assume that P ≪ Q and relative density g ≜ dP
dQ exists. Let Xn : Ω → X be a

simple function such that Xn ⩽ X and E ≜
{

X−1
n {x} : x ∈ X

}
, then PE ≜ PXn and QE ≜ QXn . We can

consider a Markov chain X → Xn and it follows from data processing inequality for f divergences that
D f (P∥Q)⩾ D f (PEn∥QEn).

We first assume that g ⩾ 0 and define En ≜ (g ◦ X)−1[ϵ(n − 1),ϵn) for each n ∈ N and a fixed ϵ > 0.
Defining S ≜ {ω ∈ Ω : (g ◦ X)(ω) > 0} and E∞ ≜ {ω : (g ◦ X)(ω) = 0}, it follows that

ϵ ∑
n∈N

(n− 1)Q(En)⩽
∫

S
dQ f (

dP
dQ

)⩽ ϵ ∑
n∈N

nQ(En)+ f (0)Q(E∞)⩽ ϵ ∑
n∈N

(n− 1)Q(En)+ f (0)Q(E∞)+ ϵ.

Definition 1.2 (convex conjugate). Let f : (0,∞) → R be a convex function, then its convex conjugate
f ∗ : R→R∪{∞} is defined as f ∗(y)≜ supx∈R+

xy− f (x) for all y ∈R. The domain of convex conjugate

f ∗ is denoted by dom( f ∗)≜ {y ∈ R : f ∗(y) < ∞}.

Definition 1.3 (lower semicontinuity). A function f : X → R is lower semicontinuous if its epigraph
{(x, t) ∈ X× R : t ⩾ f (x)} is closed in X× R.

Lemma 1.4. Consider a map f : (0,∞) → R, then its convex conjugate f ∗ : R → R ∪ {∞} has the following
two properties.
(a) Convexity. f ∗ is a convex map.
(b) Biconjugation. f ∗∗ ⩽ f with equality iff f is convex and lower semicontinuous.

Proof. Recall that f ∗ is the convex conjugate of f .
(a) We observe that xy − f (x) is an affine map in y for each x ∈ R+, and since the supremum of affine

maps is convex, it follows that f ∗ is convex in y.
(b) We will show the upper bound and the equality.

(i) From definition of convex conjugate, we have f (x) ⩾ xy − f ∗(y) for each x,y ∈ (R+ × R). It
follows that f ∗∗(x)⩽ f (x) for all x ∈ R+.

(ii) When f is convex and lower semicontinuous, its epigraph is convex and closed. Let s ∈ R+

such that f ∗∗(s) < f (s). It follows that (s, f ∗∗(s)) is not in the epigraph of f . From separating
hyperplane theorem, there exists a hyperplane (y,−λ) ∈ R2 and a scalar α such that sy −
λ f ∗∗(s)> α and xy − λ f (x)⩽ α for each x ∈ R+. If λ ̸= 0, then we get a contradiction, we can
take λ = 1 without any loss of generality. We obtain that f ∗(y) ⩽ α and sy − f ∗(y) > f ∗∗(s),
which is a contradiction.

Definition 1.5. Consider input space X and observation X : Ω → X, then for any convex functional
Ψ : M(X) → R, we denote its associated convex conjugate as Ψ∗ : RX → R, defined for each map
g ∈ RX as Ψ∗(g)≜ supP EX∼Pg(X)− Ψ(P).
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Under appropriate conditions e.g. finite X, biconjugation yields the sought-after variational repre-
sentation Ψ(P) = supg EX∼Pg(X)−Ψ∗(g). We will now compute these conjugates for Ψ(P)≜ D f (P∥Q).
It turns out to be convenient to first extend the definition of D f (P∥Q) to all finite signed measures P
then compute the conjugate.

Definition 1.6. Let f : (0,∞) → R be a convex function, then we can define its convex extension as
fext : R → R ∪ {∞} such that fext(x)≜ f (x) for x ∈ R+ and fext is convex on R.

Remark 1. In general, we can always choose fext(x) = ∞ for all x < 0. In special cases, e.g. f (x) = |x−1|
2

or f (x) = (x − 1)2 we can directly take fext(x) = f (x) for all x.

Theorem 1.7. Consider a random variable X : Ω → X on (Ω,F) and P, Q,µ ∈ M(X) such that P, Q ≪ µ.
Consider a convex function f : (0,∞) → R, its extension fext : R → R and its convex conjugate f ∗ext : R → R.
Then,

D f (P∥Q) = sup
g:X→dom( f ∗ext)

EX∼Pg(X)− EX∼Q f ∗ext(g(X)), (1)

where the supremum can be taken over either (a) all simple g or (b) over all g satisfying EX∼Q f ∗ext(g(X)) < ∞.

Proof. The convex conjugate of convex extension fext is defined as f ∗ext(y)≜ supx∈R xy − fext(x) for each
y ∈ dom( f ∗ext) and we denote the relative densities of measures P, Q with respect to µ by p,q respectively.
Step 1. We show that for any g : X→ dom( f ∗ext), we must have

EX∼Pg(X)⩽ D f (P∥Q) + EX∼Q f ∗ext(g(X)). (2)

Let g : X→ dom( f ∗ext). From the definition of f ∗ext we have for every x ∈ S ≜ {z ∈ X : q(z) > 0},

f ∗ext(g(x)) + fext

( p(x)
q(x)

)
⩾ g(x)

p(x)
q(x)

.

Recall that D fext(P∥Q) =
∫

x∈S dµ(x)q(x) fext

(
p(x)
q(x)

)
+ f ′ext(∞)EX∼P1{q(X)=0}. Multiplying both

sides by 1S(x) and integrating both sides over dQ = qdµ restricted to the set S ⊆ X, we get

EX∼Q f ∗ext(g(X)) + D fext(P∥Q)− f ′ext(∞)EX∼P1{q(X)=0} ⩾ EX∼Pg(X)1{q(X)>0}. (3)

Recall that fext is convex and lower semicontinuous and hence f ∗∗ext = fext by biconjugation, and
hence 1

x fext(x) = supy∈dom( f ∗ext)
y− 1

x f ∗ext(y) for each x ∈R. Taking limit on both sides for x → ∞,
using the definition of f ′ext(∞), and the fact that f ∗ext(y) < ∞ for each y ∈ dom( f ∗ext), we obtain

f ′ext(∞) = lim
x→∞

1
x

fext(x) = supdom( f ∗ext).

Further, we have f ∗(g(x))q(x) + p(x) q(x)
p(x) fext(

p(x)
q(x) ) ⩾ g(x)p(x). Multiplying both sides by

1{q(x)=0} = 1 − 1S(x) and integrating both sides over x, we obtain

f ′ext(∞)EX∼P1{q(X)=0} ⩾ EX∼Pg(X)1{q(X)=0}.

Summing this inequality with (3) we obtain the desired result in (2).
Step 2. We consider finite X, and let S ≜ {x ∈ X : Q(x) > 0} denote the support of Q. We show the

following statement which is equivalent to (1),

D f (P∥Q) = sup
g:S→dom( f ∗ext)

EX∼Pg(X)− EX∼Q f ∗ext(g(X)) + f ′(∞)P(Sc). (4)

Defining functional Ψ(P) ≜ ∑x∈S Q(x) fext

(
P(x)
Q(x)

)
= D f (P∥Q) where P takes values over all

signed measures on S, we have D f (P∥Q) = Ψ(P) + f ′(∞)P(Sc). Functional Ψ is a function of
P ∈ M(X), where P(Sc) = P(X) − P(S), and hence P can be identified with a map RX. The
convex conjugate of Ψ is Ψ∗ : RX → R defined for any g ∈ RX, as

Ψ∗(g)
(a)
= sup

P
∑

x∈X
P(x)g(x)− Q(x)

{
sup

h:S→dom( f ∗ext)

P(x)
Q(x)

h(x)− f ∗ext(h(x))

}
(b)
= sup

P
inf

h:S→dom( f ∗ext)
∑
x

P(x)(g(x)− h(x)) + Q(x) f ∗ext(h(x)

(c)
= inf

h:S→dom( f ∗ext)
sup

P
∑
x

P(x)(g(x)− h(x)) + Q(x) f ∗ext(h(x),
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where (a) follows from the fact that fext is convex and lower semicontinuous and hence by bi-
conjugation, we have fext(P(x)/Q(x)) = suph:S→dom( f ∗ext)

h(x)P(x)/Q(x)− f ∗ext(h(x)) for each
x ∈ S, (b) follows from finiteness of X to exchange infimum and the sum, and (c) follows
from the minimax theorem which applies due to finiteness of X. Since P is a signed mea-
sure, it follows that if g ∈ dom( f ∗ext)

S, then the minimization is achieved for g = h and Ψ∗(g) =
EX∼Q f ∗ext(g(X)). If g /∈ dom( f ∗ext)

S, then one can put arbitrarily large mass at x /∈ dom( f ∗ext) to
obtain Ψ∗(g) = ∞. That is, we have

Ψ∗(g) = EX∼Q f ∗ext(g(X))1{g∈dom( f ∗ext)
S} + ∞1{g/∈dom( f ∗ext)

S}.

Recall that if Ψ is convex and lower semicontinuous, then the convex conjugate of Ψ∗ is Ψ itself.
Applying the convex duality of convex conjugates yields the proof of the desired (4).

Step 3. We show that supremum in (1) over simple functions g does yield D f (P∥Q), so that inequality
(2) is tight. We will show that for simple functions, it suffices to show (1) for finite observation
space X. Indeed, for general X, given a finite partition E ≜ {E1, . . . , En} of X, we say a function
g : X→ R is E -measurable if g is constant on each Ei ∈ E . Taking the supremum over all finite
partitions E , we get fromTheorem 1.1 that

D f (P∥Q) = sup
E

D f (PE∥QE ) = sup
E

sup
g∈dom( f ∗ext)

X,E−measurable
EX∼Pg(X)− EX∼Q f ∗ext(g(X))

= sup
g∈dom( f ∗ext)

X, simple
EX∼Pg(X)− EX∼Q f ∗ext(g(X)),

where the last step follows since the two suprema combined is equivalent to the supremum
over all simple functions g.

Remark 2. We remark that when P ≪ Q then both results (a) for simple functions and (b) for finite
EX∼Q f ∗ext(g(X)), also hold for supremum over g : X→ R, i.e. without restricting g : X→ dom( f ∗ext). As
a consequence of the variational characterization, we get the following properties for f -divergences.

1. Convexity. First of all, note that D f (P∥Q) is expressed as a supremum of affine functions since the
expectation is a linear operation. As a result, we get that (P, Q) 7→ D f (P∥Q) is convex.

2. Weak lower semicontinuity. Recall that for an i.i.d. zero mean Rademacher vector X : Ω →{−1,1}m,
the limiting distribution of scaled empirical mean Ym ≜ 1√

m ∑m
i=1 Xi is N (0,1) as m → ∞ by the

central limit theorem. However, D f (PYm∥N (0,1)) = f (0) + f ′(∞) > 0 for all m ∈ N. This is
due to the fact that the former distribution is discrete and the latter is continuous. Therefore
similar to the KL divergence, the best we can hope for f -divergence is semicontinuity. Indeed,
if X is a nice space (e.g., Euclidean space), in (1) we can restrict the function g to continuous
bounded functions, in which case D f (P∥Q) is expressed as a supremum of weakly continuous
functionals (note that f ∗ ◦ g is also continuous and bounded since f ∗ is continuous) and is hence
weakly lower semicontinuous, i.e., for any sequence of distributions (Pm ∈ M(X) : m ∈ N) and
(Qm ∈M(X) : m ∈ N) such that Pm → P and Qm → Q weakly, we have

liminf
m→∞

D f (Pm∥Qm)⩾ D f (P∥Q).

3. Relation to DPI. Variational representations can be thought of as extensions of the DPI. As an
exercise, one should try to derive the estimate via both the DPI and (6), for any A ∈ F

|P(A)− Q(A)|⩽
√

Q(A)χ2(P∥Q).

Example 1.8 (χ2-divergence). Recall that χ2 divergence id f divergence for f (x)≜ (x − 1)2 for each
x ∈ R+. We can define its convex extension fext(x)≜ (x − 1)2 for each x ∈ R. Convex conjugate of
fext is defined for each y ∈ R as f ∗ext(y) = supx xy − (x − 1)2 which is maximized at x∗ = y

2 + 1, and

thus f ∗ext(y) = y + y2

4 . We observe that dom( f ∗ext) = R, and thus substituting this f ∗ext in (1), yields

χ2(P∥Q) = sup
h:X→R

EX∼Ph(X)−EX∼Q

[
h(X)+

h2(X)

4

]
(a)
= sup

g:X→R

2EX∼Pg(X)−EX∼Qg2(X)− 1, (5)
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where (a) follows from a change of variable g ≜ 1
2 h + 1. We restrict ourselves to the class of affine

function ga,b : X→ R defined as ga,b(x)≜ ax + b for all x ∈ X, to write the inequality

sup
g:X→R

2EX∼Pg(X)− EX∼Qg2(X)− 1 ⩾ sup
a,b∈R

2aEX∼PX + 2b − a2EX∼QX2 − 2abEX∼QX − b2 − 1.

The supremum on the right hand side is achieved for a∗ ≜ EX∼PX−EX∼QX
VarQ X and b∗ ≜ 1 − a∗EX∼QX to

write ga∗ ,b∗(X) = a∗X + b∗ = 1 + a∗(X − EX∼QX), and obtain the maximum value

sup
a,b∈R

2EX∼P(aX + b)− EX∼Q(aX + b)2 − 1 =
(EX∼PX − EX∼QX)2

VarQ X
. (6)

Remark 3. The statistical interpretation of (6) is as follows. If a test statistic h(X) is such that the sepa-
ration between its expectation under P and Q far exceeds its standard deviation, then this suggests the
two hypothesis can be distinguished reliably. The representation (6) will turn out useful in statistical ap-
plications for deriving the Hammersley-Chapman-Robbins (HCR) lower bound as well as its Bayesian
version, and ultimately the Cramér-Rao and van Trees lower bounds.

2 Varational principles for KL divergence

Definition 2.1. For a random variable X : Ω → X defined on space (Ω,F), a probability distribution
Q ∈M(X), and a measurable map f : X→ R ∪ {−∞}, we define a constant ψ f , a tilted version of Q as
Q f ∈M(X), and a class of functions CQ, as

ψ f ≜ lnEX∼Qe f (X), dQ f (x)≜ e f (x)−ψ f dQ(x), CQ ≜
{

f : X→ R ∪ {−∞} : 0 < eψ f < ∞
}

. (7)

We denote the class of all bounded continuous functions as Cb.

Theorem 2.2 (Donsker-Varadhan). For a random variable X : Ω →X defined on (Ω,F), distributions P, Q ∈
M(X), and measurable map f : X→ R ∪ {−∞}, we have

D(P∥Q) = sup
f∈CQ

EX∼P f (X)− lnEX∼Qe f (X). (8)

In particular, if D(P∥Q)< ∞ then EX∼P f (X) is well-defined and finite for every f ∈ CQ. The identity (8) holds
with CQ replaced by the class of all R-valued simple functions. If X is a normal topological space (e.g., a metric
space) with the Borel σ-algebra, then identity (8) holds with CQ replaced by Cb.

Proof. We will show upper and lower bounds.
(a) D ⩾ sup f∈CQ

. We can assume for this part that D(P∥Q) < ∞, since otherwise there is nothing to

prove. Then fix f ∈ CQ and define a probability measure Q f , a tilted version of Q as defined in (7).
Then, Q f ≪ Q. We will apply (2.11) next with reference measure µ = Q. Note that according to
(2.10) we always have Log e f (x)−ψ f

1 = f (x)− ψ f even when f (x) = −∞. Thus, we get from (2.11)

EX∼P[ f (X)]− ψ f ] = EX∼PLog
dQ f

dQ
= D(P∥Q)− D(P∥Q f )⩽ D(P∥Q).

Note that (2.11) also implies that if D(P∥Q)< ∞ and f ∈ CQ the expectation EX∼P f is well-defined.
(b) D ⩽ sup f with supremum over all simple functions f . The idea is to just take f = ln dP

dQ ; however to
handle all cases we proceed more carefully. First, notice that if P ̸≪ Q then for some E ∈ σ(X) with
Q(E) = 0< P(E) and c → ∞ taking f = c1E shows that both sides of (8) are infinite. Thus, we assume

P ≪ Q. For any partition of E ≜ (E1, . . . , En) such that X = ∪n
j=1Ej, we set f ≜ ∑n

j=11Ej ln
P(Ej)

Q(Ej)
, to

obtain
EX∼P f (X)− lnEX∼Qe f (X) = D(PE∥QE ).

By Theorem 1.1, we obtain that supremum over simple functions (and thus over CQ) is at least as
large as D(P∥Q).
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(c) D ⩽ sup f∈Cb
with supremum over all bounded continuous functions g. We show that for every simple

function g there exists a continuous bounded g0 such that EX∼Pg0 − lnEX∼Qeg0 is arbitrarily close
to the same functional evaluated at g. To that end we first show that for any a ∈ R and measurable
A ⊂ X there exists a sequence of continuous bounded f ≜ ( fn ∈ RX : n ∈ N) such that

lim
n

EX∼P fn(X) = aP(A), lim
n

EX∼Qe fn(X) = eaQ(A), (9)

hold simultaneously, i.e. fn → a1A in the sense of approximating both expectations. We only con-
sider the case of a > 0 below. Let compact F and open U be such that F ⊂ A ⊂ U and max(P(U)−
P(F), Q(U)− Q(F))⩽ ϵ. Such F and U exist whenever P and Q are regular measures. We notice that
finite measures on Polish spaces are regular. Then by Urysohn’s lemma there exists a continuous
function fϵ : X→ [0, a] equal to a on F and 0 on Uc. Then we have

aP(F)⩽ EX∼P fϵ ⩽ aP(U), eaQ(F)⩽ EX∼Qe fϵ ⩽ eaQ(U).

Subtracting aP(A) and eaQ(A) for each of these inequalities, respectively, we see that taking ϵ → 0
indeed results in a sequence of functions satisfying (9). Similarly, if we want to approximate a
general simple function g = ∑n

i=1 ai1Ai with Ai disjoint and |ai| ⩽ amax < ∞, and we fix ϵ > 0 and
define functions fi,ϵ approximating ai1Ai as above with sets Fi ⊂ Ai ⊂ Ui, so that S ≜ ∪n

i=1(Ui \ Fi)
satisfies P(S) ∨ Q(S)⩽ nϵ. We also have

| fi,ϵ − g|⩽ amax

n

∑
i=1

1Ui\Fi
⩽ namax1S.

We then clearly have |EX∼P ∑n
i=1 fi,ϵ − EX∼Pg|⩽ amaxn2ϵ. On the other hand, we also have

n

∑
i=1

eai Q(Fi)⩽ EX∼Qe∑n
i=1 fi,ϵ ⩽ EX∼Qeg

1Sc + enamax Q(S)⩽ EX∼Qeg + enamax nϵ.

Hence taking ϵ → 0 the sum ∑n
i=1 fi,ϵ → ∑n

i=1 ai1Ai in the sense of both EX∼P(·) and EX∼Qe·.

Corollary 2.3. For space X, distributions P, Q ∈ M(X), and measurable map f ∈ CQ, we have D(P∥Q) ⩾
EX∼P f (X)− ψ f with the equality achieved for a unique measure P = Q f when D(P∥Q) is finite.

Proof. The inequality follows from Theorem 2.2. We observe that Log dQ f

dQ = f − ψ f even when f =−∞.
Therefore, if D(P∥Q) < ∞, then

EX∼P[ f (X)− ψ f ] = EX∼P ln
dP
dQ

− EX∼P ln
dP

dQ f = D(P∥Q)− D(P∥Q f ).

It follows that D(P∥Q) < ∞ iff EX∼P f (X) < ∞, and D(P∥Q) = EX∼P f (X)− ψ f iff D(P∥Q f ) = 0.

Proposition 2.4 (Gibbs variational principle). Let f : X → R ∪ {−∞} be any measurable function and
Q ∈ M(X). Then ψ f = supP∈M(X):D(P∥Q)<∞ EX∼P f (X) − D(P∥Q). If the left-hand side is finite then the
unique maximizer of the right-hand side is P = Q f .

Proof. Consider P ∈M(X) such that D(P∥Q)< ∞, then P ≪ Q. If ψ f =−∞ then EX∼Qe f (X) = 0 which
implies that Q{ f = −∞} = 1. Since P ≪ Q, we obtain that P{ f = −∞} = 1, and hence both sides of
the above equation are equal to −∞. Next, we consider the case when ψ f ∈ R. From Corollary 2.3, we
have ψ f ⩾ EX∼P f (X)− D(P∥Q), with equality at P = Q f .

Finally, we consider the case when ψ f = ∞. We define a sequence of bounded functions fn ≜ f ∧ n
for all n ∈ N. It follows that (ψ fn : n ∈ N) is a non-decreasing sequence of finite numbers with limit
limn∈N ψ fn = ψ f = ∞. Since ψ fn is finite, there exists a distribution Pn ∈ M(X) such that EPn fn(X)−
D(Pn∥Q) = ψ fn for each n ∈ N. Since fn ⩽ f , we obtain

EPn f (X)− D(Pn∥Q)⩾ ψ fn .

The result follows from Fatou’s lemma by taking liminf on both sides.
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