
Lecture-24: Large sample asymptotic

1 Statistical lower bound from data processing

We give an overview of the classical large-sample theory in the setting of i.i.d. observations focusing
again on the minimax risk. We focus primarily on the quadratic risk and assume that Θ ⊆ Rd is an open
set. These results pertain to smooth parametric models in fixed dimensions, with the sole asymptotics
being the sample size going to infinity. The main result is that, under suitable conditions, the minimax
squared error of estimating θ based on i.i.d. sample X : Ω → Xm with common distribution Pθ ∈ P(Θ)
and Fisher information matrix JF(θ) satisfies

R∗
m ≜ inf

θ̂
sup
θ∈Θ

E[
∥∥θ̂ − θ

∥∥2 | θ] =
1 + o(1)

m
sup
θ∈Θ

tr J−1
F (θ). (1)

Remark 1. This is asymptotic characterization of the minimax risk with sharp constant. In high dimen-
sions, such precise results are difficult and rare.
(a) We derive several statistical lower bounds from data processing argument.
(b) Specifically, we will take a comparison-of-experiment approach by comparing the actual model

with a perturbed model.
(c) The performance of a given estimator can be then related to the f -divergence via the data processing

inequality and the variational representation.

We start by discussing the Hammersley-Chapman-Robbins lower bound which implies the well-
known Cramér-Rao lower bound. Because these results are restricted to unbiased estimators, we will
also discuss their Bayesian version.

1.1 Hammersley-Chapman-Robbins (HCR) lower bound

Theorem 1.1 (HCR lower bound). Consider the statistical decision theory simple setting with Y= Θ = Θ′ ≜
R, and quadratic loss function ℓ : (θ, θ̂) 7→ (θ − θ̂)2. The quadratic risk at any parameter θ ∈ Θ satisfies

Rθ(θ̂) = Eθ(θ − θ̂)2 ⩾ Varθ(θ̂)⩾ sup
θ ̸=θ′

(Eθ [θ̂]− Eθ′ [θ̂])
2

χ2(Pθ′∥Pθ)
.

Proof. Since the conditional expectation minimizes quadratic risk, we have E[(θ̂ − E[θ̂ | θ])g(θ) | θ] = 0
for any function g : Θ → Θ′. Further, from the property of conditional mean, the difference θ − E[θ̂ | θ]
is a function of θ. Hence, it follows that

Rθ(θ̂) = E[(θ − θ̂)2 | θ] = E[(θ − E[θ̂ | θ])2 | θ] + E[(θ̂ − E[θ̂ | θ])2 | θ]⩾ Varθ(θ̂). (2)

Conside a two subset {θ,θ′} ⊆ Θ, and a random estimator θ̂(X) defined by the Markov kernel Pθ̂(X)|X :

X → M(Θ′). Consider the Markov chains θ → X → θ̂ and θ′ → X → θ̂, where input is random obser-
vation X and the output is random estimate θ̂(X) with the common channel Pθ̂(X)|X . Corresponding to

two different input distributions QX ≜ Pθ and PX ≜ Pθ′ , we denote the marginal distribution of estima-
tors as Qθ̂ ≜ EX∼QX Pθ̂(X)|X and Pθ̂ ≜ EX∼PX Pθ̂(X)|X , respectively. From the data processing inequality
for f -divergence and the variational representation of χ2-divergence, we obtain

χ2(PX∥QX)⩾ χ2(Pθ̂∥Qθ̂)⩾
(Eθ [θ̂]− Eθ′ [θ̂])

2

Varθ(θ̂)
.
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Corollary 1.2 (Cramér-Rao (CR) lower bound). Under the regularity conditions for parametric family, on
(a) the existence of relative density, (b) the existence of continuous derivative of relative density with respect to
parameter θ, and (c) the uniform integrability of the ratio of square of derivative of the density and density, we
have for any unbiased estimator θ̂ that satisfies Eθ [θ̂] = θ for all θ ∈ Θ ⊂ R,

Varθ(θ̂)⩾
1

JF(θ)
. (3)

Proof. From HCR lower bound in Theorem 1.1, we get Rθ(θ̂) = Varθ(θ̂) ⩾ supθ′ ̸=θ
(θ−θ′)2

χ2(Pθ′∥Pθ)
. The result

follows by lower bounding the supremum by the limit of θ′ → θ, and recalling the asymptotic quadratic
expansion of χ2-divergence in the local neighborhood in terms of the Fisher information.

Exercise 1.3. Show that for vector y ∈ Rd and a positive definite matrix Σ ∈ Rd×d, we have

supx∈Rd :x ̸=0
⟨x,y⟩2

x⊤Σx = y⊤Σ−1y, where the maxima is achieved at x∗ = Σ−1y.

Remark 2. We note the following for HCR lower bound and CR lower bound.
(a) The HCR lower bound is based on the χ2-divergence. We can write a lower bound version based

on Hellinger distance which also implies the CR lower bound.
(b) Both the HCR and the CR lower bounds extend to the multivariate case as follows. Let θ̂ be an

unbiased estimator of θ ∈ Θ ⊆ Rd. Assume that its covariance matrix Covθ(θ̂)≜ Eθ(θ̂ − θ)(θ̂ − θ)⊤

is positive definite. Fix a ∈ Rd. Applying HCR lower bound to estimand T(θ)≜ ⟨a,θ⟩ and estimator
T̂(X)≜

〈
a, θ̂(X)

〉
, we get

χ2(Pθ′∥Pθ)⩾
(Eθ

〈
a, θ̂

〉
− Eθ′

〈
a, θ̂

〉
)2

Varθ

〈
a, θ̂

〉 =
⟨a,θ − θ′⟩2

a⊤ Covθ(θ̂)a
.

Since the choice of a ∈ Rd was arbitrary, the right hand side of the equation holds for all a. Taking
supremum over a, it follows from Exercise 1.3 that

χ2(Pθ′∥Pθ)⩾ (θ − θ′)⊤ Covθ(θ̂)
−1(θ − θ′).

(c) From the additivity property of the Fisher information, the Fisher information matrix for a sample
of m i.i.d. observations is equal to mJF(θ). Writing the Taylor series expansion of χ2-divergence in
the neighborhood of θ ∈ Θ ⊆ Rd, we get

(θ′ − θ)⊤
(

mJF(θ)− (Covθ(θ̂))
−1

)
(θ′ − θ) + o(

∥∥θ′ − θ
∥∥2
)⩾ 0.

Taking the limit θ′ → θ, we obtain mJF(θ)− (Covθ(θ̂))
−1 ≽ 0, and taking trace we conclude that the

squared error of any unbiased estimators satisfies

Eθ

∥∥θ̂ − θ
∥∥2

= trCovθ(θ̂)⩾
1
m

tr J−1
F (θ).

This is already very close to (1), except for the fundamental restriction of unbiased estimators.

1.2 Bayesian HCR and CR lower bounds

The drawback of the HCR and CR lower bounds is that they are confined to unbiased estimators. In
fact, it is often wise to trade bias with variance in order to achieve a smaller overall risk.

Next we discuss a lower bound, known as the Bayesian Cramér-Rao (BCR) lower bound or the van
Trees inequality, for a Bayesian setting that applies to all estimators. To apply to the minimax setting,
one just needs to choose an appropriate prior.
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Exercise 1.4 (Chain rule for χ2-divergence). Show that for any pair of measures PX,Y and QX,Y
we have

χ2(PX,Y∥QX,Y) = χ2(PX∥QX) + EX∼QX

[( dPX
dQX

)2
χ2(PY|X∥QY|X)

]
, (4)

regardless of the versions of conditional distributions PY|X and QY|X one chooses.

Exercise 1.5 (Data processing inequality for f -divergence). For any Markov chain X → Y → Z,
a pair of measures PX,Y,Z and QX,Y,Z with common Markov kernel PZ|Y = QZ|Y, a convex map
f : (0,∞)→ R+, and arbitrary function g : X× Z→ R, we have

D f (PX,Y∥QX,Y)⩾ D f (PX,Z∥QX,Z)⩾ D f (Pg(X,Z)∥Qg(X,Z)). (5)

Definition 1.6 (Push forward operator). For any δ > 0, we define a push forward operator Tδ : M(R)→
M(R) that applies δ shift to measurable sets. Specifically, Tδµ ∈M(X) for any measure µ ∈M(X), and
is defined as (Tδµ)(−∞, x]≜ µ(−∞, x − δ] for any x ∈ R.

Theorem 1.7 (Bayesian HCR lower bound). Consider statistical decision theory simple setting for Θ ≜ R

with statistical model P(Θ) such that for any Pθ ∈ P(Θ) there exists a relative density pθ ∈M(X) with respect
to a dominant measure µ ∈ M(X). Further, we assume a prior π ∈ M(Θ) that admits a relative density π′

with respect to Lebesgue measure, and two distributions P, Q ∈ M(Θ × X) such that dQθ,X ≜ dπ(θ)dPθ(X)

and dPθ,X ≜ d(Tδπ)(θ)dPθ−δ(X). Then, the Bayes risk satisfies the Bayesian HCR lower bound

R∗
π ≜ inf

θ̂
E(θ,X)∼Q(θ̂ − θ)2 ⩾ sup

δ ̸=0

δ2

χ2(Pθ,X∥Qθ,X)
.

Proof. We observe that for measures P, Q, their respective relative densities p,q exist with respect to
product measure of Lebesgue measure on Θ and dominant measure µ ∈M(X) such that for all (θ, x),

q(θ, x)≜ π′(θ)pθ(x), p(θ, x)≜ π′(θ − δ)pθ−δ(x).

Consider a random estimator θ̂(X) for observation X and external randomness with Markov kernel Pθ̂|X
such that θ → X → θ̂ is a Markov chain. Consider joint distributions Pθ,X , Qθ,X , apply data processing
inequality from Exercise 1.5, and variational representation of χ2-divergence from Exercise 1.4, to obtain

χ2(Pθ,X∥Qθ,X)⩾ χ2(Pθ,θ̂∥Qθ,θ̂)⩾ χ2(Pθ−θ̂∥Qθ−θ̂)⩾
(E(θ,X)∼P[θ − θ̂]− E(θ,X)∼Q[θ − θ̂])2

Var(θ,X)∼Q(θ̂ − θ)
.

We observe that QX(x) =
∫

Θ dπ(θ)Pθ(x) and PX(x) =
∫

Θ dπ(θ − δ)Pθ−δ(x). By substitution of variables,
we observe that PX = QX and thus E(θ,X)∼P θ̂ = E(θ,X)∼Q θ̂. On the other hand, E(θ,X)∼Pθ = E(θ,X)∼Qθ +
δ. Next, we focus on the denominator

Var(θ,X)∼Q(θ̂ − θ) = E(θ,X)∼Q(θ − θ̂)2 − (E(θ,X)∼Q(θ − θ̂))2 ⩽ E(θ,X)∼Q(θ − θ̂)2

with equality iff E(θ,X)∼Qθ = E(θ,X)∼Q θ̂. Since this applies to any estimator, the result follows.

Definition 1.8 (Fisher information). For any measure π ∈ M(R) such that π(x) ≜ π(−∞, x] for all
x ∈ R, and the relative density π′(x) ≜ dπ(x)

dx with respect to Lebesgue measure exists, we define its
Fisher information as

J(π′)≜ EX∼π

( d
dx

lnπ′(X)
)2

=
∫

R
dx

(π′′(x))2

π′(x)
.

Corollary 1.9 (Bayesian CR lower bound). Under the conditions of Theorem 1.7 and suitable regularity
conditions for the local expansion of χ2-divergence such that χ2(Tδπ∥π) = (J(π)+ o(1))δ2 and χ2(Pθ−δ∥Pθ) =
(JF(θ) + o(1))δ2, the Bayes risk satisfies the Bayesian CR lower bound

R∗
π ⩾

1
J(π) + Eθ∼π JF(θ)

.
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Proof. We can lower bound the supremum in Theorem 1.7 by evaluating the small-δ limit. Recognizing
that Pθ = Tδπ, Qθ = π and PX|θ = Pθ−δ, QX|θ = Pθ , applying the chain rule for the χ2-divergence in
Exercise 1.4, and applying the local expansion of χ2-divergence we obtain the result.

Example 1.10 (GLM). Consider an i.i.d. observation sample X : Ω → Xm under GLM with common
Gaussian distribution N (θ,1) and consider the prior θ ∼ π ≜N (0, s). To apply the Bayesian HCR
bound, we note that X̄ ≜ 1

m ∑m
i=1 Xi is a sufficient statistic for X, and apply the chain rule to obtain

χ2(Pθ,X∥Qθ,X) = χ2(Pθ,X̄∥Qθ,X̄) = χ2(Pθ∥Qθ) + EQ

[
χ2(PX̄|θ∥QX̄|θ)

( dPθ

dQθ

)2
]

.

From the definition of P and Q, we obtain that Qθ = N (0, s), QX̄|θ = N (θ, 1
m ), and Pθ =

N (δ, s), PX̄|θ =N (θ − δ, 1
m ). Using the χ2-divergence for Gaussians, we get

χ2(Pθ,X∥Qθ,X) = e
δ2
s − 1 + e

δ2
s (emδ2 − 1) = eδ2(m+ 1

s ) − 1.

We can write the Bayesian HCR lower bound as

R∗
π ⩾ sup

δ ̸=0

δ2

eδ2(m+ 1
s ) − 1

⩾ lim
δ→0

δ2

eδ2(m+ 1
s ) − 1

=
s

sm + 1
.

In view of the Bayes risk found, we see that in this case the Bayesian HCR and Bayesian Cramér-Rao
lower bounds are exact.
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