Lecture-24: Large sample asymptotic

1 Statistical lower bound from data processing

We give an overview of the classical large-sample theory in the setting of i.i.d. observations focusing
again on the minimax risk. We focus primarily on the quadratic risk and assume that ® C R is an open
set. These results pertain to smooth parametric models in fixed dimensions, with the sole asymptotics
being the sample size going to infinity. The main result is that, under suitable conditions, the minimax
squared error of estimating 6 based on i.i.d. sample X : () — X" with common distribution Py € P(0®)
and Fisher information matrix J¢(6) satisfies
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Remark 1. This is asymptotic characterization of the minimax risk with sharp constant. In high dimen-

sions, such precise results are difficult and rare.

(a) We derive several statistical lower bounds from data processing argument.

(b) Specifically, we will take a comparison-of-experiment approach by comparing the actual model
with a perturbed model.

(c) The performance of a given estimator can be then related to the f-divergence via the data processing
inequality and the variational representation.

We start by discussing the Hammersley-Chapman-Robbins lower bound which implies the well-
known Cramér-Rao lower bound. Because these results are restricted to unbiased estimators, we will
also discuss their Bayesian version.

1.1 Hammersley-Chapman-Robbins (HCR) lower bound

Theorem 1.1 (HCR lower bound). Consider the statistical decision theory simple setting with ) = © = @' £
R, and quadratic loss function £ : (6,0) — (6 — §)2. The quadratic risk at any parameter 6 € © satisfies
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Proof. Since the conditional expectation minimizes quadratic risk, we have E[(f — E[f | 8])g(6) | 0]=0
for any function g : ® — ©'. Further, from the property of conditional mean, the difference 6 — E[6 | 6]
is a function of 6. Hence, it follows that

Ro(8) =E[(6 —8)*| 6] =E[(6 — E[9 | 6])* | 6] + E[(§ —E[A] 6])* | 6] > Var(6). ©)

Conside a two subset {6,6'} C ®, and a random estimator (X) defined by the Markov kernel Pyexyx :

X — M(@'). Consider the Markov chains 0 —+X—= 0 and ¢’ — X — 0, where input is random obser-
vation X and the output is random estimate 6(X) with the common channel P; (x)|x" Corresponding to

two different input distributions Qx £ Py and Px £ Py, we denote the marginal distribution of estima-
tors as Q5 = Exqoy Pyxyx and Py £ Ex.p, Py(x)x respectively. From the data processing inequality

for f-divergence and the variational representation of x>-divergence, we obtain
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Corollary 1.2 (Cramér-Rao (CR) lower bound). Under the regularity conditions for parametric family, on
(a) the existence of relative density, (b) the existence of continuous derivative of relative density with respect to
parameter 8, and (c) the uniform integrability of the ratio of square of derivative of the density and density, we
have for any unbiased estimator @ that satisfies Eg[0] = 6 for all § € © C R,
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Proof. From HCR lower bound in Theorem we get Rg(#) = Vary () > SUPgr L )(2(((91;79(‘);). The result
o/
follows by lower bounding the supremum by the limit of ' — 6, and recalling the asymptotic quadratic
expansion of x2-divergence in the local neighborhood in terms of the Fisher information. O

Exercise 1.3. Show that for vector y € R? and a positive definite matrix = € R?*?, we have

2
SUP,eRe.x-£0 S‘Ty;x =y 21y, where the maxima is achieved at x* = 2 y.

Remark 2. We note the following for HCR lower bound and CR lower bound.

(a) The HCR lower bound is based on the )(z—divergence. We can write a lower bound version based
on Hellinger distance which also implies the CR lower bound.

(b) Both the HCR and the CR lower bounds extend to the multivariate case as follows. Let f be an
unbiased estimator of # € ® C IRY. Assume that its covariance matrix Covg(8) 2 Ey( —0)(0 —6) "
is positive definite. Fix a € R?. Applying HCR lower bound to estimand T(8) £ (a,6) and estimator
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T(X) £ (a,0(X)), we get
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Since the choice of a € RY was arbitrary, the right hand side of the equation holds for all a. Taking
supremum over 4, it follows from Exercise[1.3|that

X*(Py||Pg) = (6 —6) T Cove(6)1(6 —6").

(c) From the additivity property of the Fisher information, the Fisher information matrix for a sample
of m i.i.d. observations is equal to mJr(6). Writing the Taylor series expansion of x2-divergence in
the neighborhood of § € ® C RY, we get

(6 —6)" (mJE(6) — (Cove(8)) ™) (6" — 6) +o( |6 — 6]*) > 0.

Taking the limit 8’ — 6, we obtain mJr(8) — (Covg(8))~! = 0, and taking trace we conclude that the
squared error of any unbiased estimators satisfies

Eo |8 — 6] = trCovy(8) > - e/ 1(6).

This is already very close to (I)), except for the fundamental restriction of unbiased estimators.

1.2 Bayesian HCR and CR lower bounds

The drawback of the HCR and CR lower bounds is that they are confined to unbiased estimators. In
fact, it is often wise to trade bias with variance in order to achieve a smaller overall risk.

Next we discuss a lower bound, known as the Bayesian Cramér-Rao (BCR) lower bound or the van
Trees inequality, for a Bayesian setting that applies to all estimators. To apply to the minimax setting,
one just needs to choose an appropriate prior.



Exercise 1.4 (Chain rule for Xz-divergence). Show that for any pair of measures Pxy and Qx y
we have
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regardless of the versions of conditional distributions Py|x and Qy|x one chooses.

|Qxy) = x*(Px||Qx) + Ex~qy

x*(Pxy
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Exercise 1.5 (Data processing inequality for f-divergence). For any Markov chain X =Y — Z,
a pair of measures Py y 7 and Qx y z with common Markov kernel Pziy = QZ‘Y, a convex map
f:(0,00) = R, and arbitrary function g : X x Z — R, we have

D¢ (Px,y||Qx,y) 2 Df(Px,zI|Qx,z) 2 Df(Py(x,2) | Qq(x,2))- @)
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Definition 1.6 (Push forward operator). For any ¢ > 0, we define a push forward operator T; : M(R) —
M(R) that applies ¢ shift to measurable sets. Specifically, Tsu € M (X) for any measure y € M (X), and
is defined as (Tsu)(—00,x] £ p(—00,x — 4] for any x € R.

Theorem 1.7 (Bayesian HCR lower bound). Consider statistical decision theory simple setting for ® = R
with statistical model P (©) such that for any Py € P () there exists a relative density pg € M(X) with respect
to a dominant measure y € M(X). Further, we assume a prior 7 € M(®) that admits a relative density 7’
with respect to Lebesgue measure, and two distributions P,Q € M(® x X) such that dQq x = d7t(6)dPy(X)
and dPy x £ d(Tsm)(0)dPy_s(X). Then, the Bayes risk satisfies the Bayesian HCR lower bound
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Proof. We observe that for measures P,Q, their respective relative densities p,q exist with respect to
product measure of Lebesgue measure on ® and dominant measure y € M (X) such that for all (6,x),

q(6,x) = 7' () po(x), p(0,x) = 7' (0 — 8)pe—s(x).

Consider a random estimator (X) for observation X and external randomness with Markov kernel Pé‘ X

such that @ — X — 0 is a Markov chain. Consider joint distributions Py x,Qp x, apply data processing
inequality from Exercise and variational representation of x?-divergence from Exercise to obtain

(Eg,x)~p[0 — 0] — E g x)~0l0 — 0])*
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We observe that Qx (x) = [od7(6)Py(x) and Px(x) = [ d7(6 — 8)Ps_s(x). By substitution of variables,
we observe that Px = Qx and thus IE(Q,)QNPGA = ]E(G,X)NQGA. On the other hand, [E g x).p0 = EE g x)~00 +
6. Next, we focus on the denominator

A A

Var g x)~o (0 — ) =E g x)~o (0 — 6)> — (E(g x)~q(6 — 0))* <Egx).q(6 — 0)*
with equality iff Eg x)..of = ]E(Q,X)NQé' Since this applies to any estimator, the result follows. O

Definition 1.8 (Fisher information). For any measure 71 € M(R) such that 7r(x) £ 71(—00,x] for all

x € R, and the relative density 7/(x) = % with respect to Lebesgue measure exists, we define its

Fisher information as
na d. 2_/ (" (x))?
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Corollary 1.9 (Bayesian CR lower bound). Under the conditions of Theorem and suitable reqularity
conditions for the local expansion of x*-divergence such that x*(Ts7t||7t) = (J(7t) 4+ 0(1))6% and x*(Py_s|| Ps) =
(JE(0) + 0(1))d?, the Bayes risk satisfies the Bayesian CR lower bound

1
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Proof. We can lower bound the supremum in Theorem [1.7]by evaluating the small-é limit. Recognizing
that Py = Ty;,Qp = 7 and Pyjg = Py—s5,Qxje = Do, applying the chain rule for the x?-divergence in
Exercise and applying the local expansion of x?-divergence we obtain the result. O

Example 1.10 (GLM). Consider an i.i.d. observation sample X : 3 — X" under GLM with common
Gaussian distribution N (,1) and consider the prior § ~ 7 = N(0,s). To apply the Bayesian HCR
bound, we note that X £ % Y"1 X; is a sufficient statistic for X, and apply the chain rule to obtain

x> (Po,x1|Qo,x) = x*(Pa gl Qe,%) = x*(Pol| Qo) + Eg
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From the definition of P and Q, we obtain that Qs = N(0,5),Qgjp = N (6,1), and Py =
N (8,5),Pgjg = N (0 — 6, ;). Using the x*-divergence for Gaussians, we get
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We can write the Bayesian HCR lower bound as
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In view of the Bayes risk found, we see that in this case the Bayesian HCR and Bayesian Cramér-Rao
lower bounds are exact.
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