
Lecture-25: Mutual information and channel capacity

1 Mutual information

Lemma 1.1. Let P, Q ∈M(Y) be two measures on space Y, then the map (P, Q) 7→ D(P∥Q) is convex.

Proof. Consider state space X ≜ {0,1}, Bernoulli random variable X : Ω → X with distribution PX =
QX ∈M(X) having mean λ ∈ [0,1]. Let P0, P1, Q0, Q1 ∈M(Y) and define Markov kernels

PY|X=0 ≜ P0, PY|X=1 ≜ P1, QY|X=0 ≜ Q0, QY|X=1 ≜ Q1.

The divergence of two joint distributions PX,Y and QX,Y in terms of conditional divergence, is given by

D(PX,Y∥QX,Y) = D(PY|X∥QY|X | PX) = λ̄D(P0∥Q0) + λD(P1∥Q1).

We get the result from the data processing inequality D(PX,Y∥QX,Y) ⩾ D(PY∥QY) for KL divergence
and recalling that PY = EX∼PX PY|X .

Remark 1. The proof shows that for an arbitrary measure of similarity D(P∥Q), the convexity of (P, Q) 7→
D(P∥Q) is equivalent to conditioning increases divergence property of D. Convexity can also be under-
stood as mixing decreases divergence.

Definition 1.2. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the
mutual information is defined as

I(X;Y)≜ D(PX,Y∥PXPY).

Lemma 1.3. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈ M(X× Y), the mutual
information I(X;Y) = D(PY|X∥PY | PX).

Proof. From the definition of mutual information and tower property of conditional expectation, we

write I(X;Y) = EPX PY|X ln
dPY|X
dPY

= EPX D(PY|X∥PY) = D(PY|X∥PY | PX).

Theorem 1.4 (Joint vs marginal mutual information). Consider a random vector (X,Y) : Ω → (X× Y)m.
(a) If the channel is memoryless, i.e., PY|X = ∏m

i=1 PYi |Xi
, then I(X;Y)⩽ ∑m

i=1 I(Xi;Yi), with equality iff PY =

∏m
i=1 PYi . Consequently, the (unconstrained) capacity is additive for memoryless channels, i.e.

max
PX

I(X;Y) =
m

∑
i=1

max
PXi

I(Xi;Yi).

(b) If the source is memoryless, i.e., PX = ∏m
i=1 PXi , then I(X;Y) ⩾ ∑m

i=1 I(Xi;Y) with equality iff PX|Y =

∏m
i=1 PXi |Y-almost surely. Consequently,

min
PY|X

I(X;Y) =
m

∑
i=1

min
PY|Xi

I(Xi;Y).

Proof. We utilize the definition of mutual information.
(a) From the definition of mutual information, we write

I(X;Y)−
m

∑
i=1

I(Xi,Yi) =EPX EPY|X

(
ln

dPY|X
dPY

−
m

∑
i=1

ln
dPYi |Xi

dPYi

)
=EPX EPY|X

[
ln

dPY|X
dPY

− ln
∏m

i=1 dPYi |Xi

∏m
i=1 dPYi

]
.

We can rearrange the terms and observe that ln PY
∏m

i=1 PYi
only depends on PY, to get

I(X;Y)−
m

∑
i=1

I(Xi,Yi) = D(PY|X∥
m

∏
i=1

PYi |Xi
| PX)− D(PY∥

m

∏
i=1

PYi ).

When channel is memoryless, D(PY|X∥∏m
i=1 PYi |Xi

| PX) = 0, and we get the result.
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(b) Similarly, switching the role of X and Y, we can write

I(X;Y)−
m

∑
i=1

I(Xi,Y) =EPY EPX|Y

[
ln

dPX|Y
dPX

− ln
∏m

i=1 dPXi |Y
∏m

i=1 dPXi

]
= D(PX|Y∥

m

∏
i=1

PXi |Y | PY)−D(PX∥
m

∏
i=1

PXi ).

When source is memoryless, D(PX∥∏m
i=1 PXi ) = 0, and we get the result.

Remark 2. We observe the following.
(a) For a product channel, the input maximizing the mutual information is a product distribution.
(b) For a product source, the channel minimizing the mutual information is a product channel.

Definition 1.5 (Conditional mutual information). We define conditional mutual information between
random variables X and Y given Z as

I(X;Y | Z)≜ D(PX,Y|Z∥PX|ZPY|Z | PZ) = Ez∼PZ I(X;Y | Z = z),

where the product PX|ZPY|Z is a conditional distribution under which X and Y are independent condi-
tioned on Z.

Lemma 1.6 (Chain rule). For random variables X,Y, Z, we have I(Y, Z; X) = I(X;Y) + I(X; Z | Y).

Proof. By the definition of conditional mutual information and mutual information, we get

I(X; Z |Y) =EPX,Y,Z ln
dPX,Z|Y

dPX|YdPZ|Y
=EPX,Y,Z ln

dPX,Y,Z

dPX|YdPY,Z
=EPX,Y,Z ln

dPY,Z|XdPX

dPY,ZdPX|Y
= I(X; Z |Y)− I(X;Y).

Theorem 1.7 (Data processing inequality). If X → Y → Z is a Markov chain, then I(X; Z)⩽ I(X;Y) with
equality iff X → Z → Y is also a Markov chain.

Proof. Since X → Y → Z is a Markov chain, random variables X and Z are conditionally independent
given Y, and hence I(X; Z | Y) = 0. Applying Kolmogorov identity to I(Y, Z; X), we get

I(Y, Z; X) = I(X;Y) + I(X; Z | Y) = I(X; Z) + I(X;Y | Z).

The result follows from the observation that I(X; Z | Y) = 0 and I(X;Y | Z) ⩾ 0 with equality iff X →
Z → Y is also a Markov chain.

Lemma 1.8. For a random vector (X,Y) : Ω → X× Y with joint distribution PX,Y ∈M(X× Y),
(a) the mutual information I(X;Y) is convex in PY|X for a fixed PX .
(b) the mutual information I(X;Y) is concave in PX for a fixed PY|X .

Proof. Consider random variables X,Y0,Y1 and an independent Bernoulli random variable W : Ω →
{0,1} with mean EW = λ ∈ [0,1].
(a) Consider two Markov kernels PY0|X , PY1|X ∈M(Y)X and λ ∈ [0,1] and define Z ≜ W̄Y0 +WY1. Then,

we observe that PZ|X = λ̄PY0|X + λPY1|X . Since EX∼PX EPY|X = PY, we get PZ = EX∼PX EPZ|X =

λ̄PY0 + λPY1 . Since the map (P, Q) 7→ D(P∥Q) is convex, we have

I(Z; X) = D(PZ|XPX∥PZPX)⩽ λ̄D(PY0|XPX∥PY0 PX) + λD(PY1|XPX∥PY1 PX) = λ̄I(Y0; X) + λI(Y1; X).

(b) Consider random variables X0, X1 such that X = W̄X0 + WX1, and hence PX = λ̄PX0 + λPX1 . Then
W → X → Y is a Markov chain and I(W;Y | X) = 0. Therefore, by chain rule of mutual information
and the fact that mutual information is non negative, we get

I(X;Y) = I(Y; X) + I(Y;W | X) = I(X,W;Y) = I(W;Y) + I(X;Y | W)⩾ I(X;Y | W).

Since I(X;Y | W) = λ̄I(X0;Y) + λI(X1;Y), we get the result.
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A Channel capacity

Definition A.1. Define a bivariate function Log a
b : R+ × R+ → R ∪ {±∞} by

Log
a
b
= −∞1{a=0,b>0} + ∞1{a>0,b=0} + 01{a=0,b=0} + ln

a
b
1{a>0,b>0}.

Remark 3. Let P, Q, R ≪ µ and fP, fQ, fR denote their densities relative to µ.
(a) EPLog fR

fQ
exists and D(P∥Q)− D(P∥R) = EPLog fR

fQ
if at least one of the divergences is finite.

(b) EPLog fP
fQ

is well-defined but possibly infinite, and D(P∥Q) = EPLog fP
fQ

. In particular, when P ≪ Q

we have D(P∥Q) = EP ln dP
dQ .

A.1 Geometric interpretation of channel capacity

Mutual information (MI) can be understood as a weighted “distance” from the conditional distributions
to the marginal distribution. Indeed, for a discrete random variable X : Ω → X, we have

I(X;Y) = D(PY|X∥PY | PX) = ∑
x∈X

D(PY|X=x∥PY)PX(x).

Furthermore, it turns out that PY, similar to the center of gravity, minimizes this weighted distance
and thus can be thought as the best approximation for the “center” of the collection of distributions{

PY|X=x : x ∈ X
}

with weights given by PX . We formalize these results in this section and start with the
proof of a “golden formula”.

Exercise A.2. Show that conditioning increases divergence. That is, consider an input X and
output Y under two different channels PY|X , QY|X that lead to output distributions PY, QY respec-
tively. Then, show that D(PY∥QY)⩽ D(PY|X∥QY|X | PX) with equality iff D(PX|Y∥QX|Y | PY) = 0.

Theorem A.3 (Golden formula). For any QY we have

D(PY|X∥QY | PX) = I(X;Y) + D(PY∥QY). (1)

Thus, if D(PY∥QY) < ∞, then I(X;Y) = D(PY|X∥QY | PX)− D(PY∥QY).

Proof. In the discrete case and ignoring the possibility of dividing by zero, the argument is really simple.
We observe that

I(X;Y) = EPX,Y ln
PY|X
PY

= EPX,Y ln
PY|XQY

PYQY
= EPX,Y ln

PY|X
QY

− EPY ln
QY
PY

.

The argument below is a rigorous implementation of this idea.
From the fact that conditioning increases divergence, we have D(PY|X∥QY | PX) ⩾ D(PY∥QY) and

thus if D(PY∥QY) = ∞ then both sides of (1) are infinite. Thus, we assume D(PY∥QY) < ∞ and in
particular PY ≪ QY. Hence, we can define λ(y) ≜ dPY

dQY
(y) for each y ∈ Y. Rewriting LHS of (1) via the

chain rule of divergence, we see that Theorem amounts to proving

D(PX,Y∥PXQY) = D(PX,Y∥PXPY) + D(PY∥QY).

The case of D(PX,Y∥PXQY) = D(PX,Y∥PXPY) = ∞ is clear. Thus, we can assume at least one of these
divergences is finite. Since PY ≪ QY, we have PXPY ≪ PXQY, and hence we can assume PX,Y ≪ PXQY
without loss of any generality. Since λ(Y) > 0, PY-a.s., applying the definition of Log in Definition A.1,
we write

EPY lnλ(Y) = EPX,Y Log
λ(Y)

1
. (2)

Notice that the same λ(y) is also the density dPXPY
dPX QY

(x,y) of the product measure PXPY with respect
PXQY. Therefore, the RHS of (2) by Remark 3(a) applied with µ= PXQY coincides with D(PX,Y∥PXQY)−
D(PX,Y∥PXPY), while the LHS of (2) by Remark 3(b) equals D(PY∥QY). Thus, we have shown the re-
quired D(PY∥QY) = D(PX,Y∥PXQY)− D(PX,Y∥PXPY).
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Corollary A.4 (Mutual information as center of gravity). For any QY we have I(X;Y) ⩽ D(PY|X∥QY |
PX). Consequently I(X;Y) = minQY D(PY|X∥QY | PX). If I(X;Y) < ∞, the unique minimizer is QY = PY .

Theorem A.5. Let A≜
{

QX|Y : QX|Y=y ≪ PX for PY − a.e. y
}

.

(a) For any Markov kernel QX|Y ∈ A, we have I(X;Y)⩾ EPX,Y ln
dQX|Y

dPX
.

(b) If I(X;Y) < ∞, then I(X;Y) = supQX|Y∈A EPX,Y ln
dQX|Y

dPX
.

Proof. Since modifying QX|Y=y on a negligible set of y’s does not change the expectations, we will
assume that QX|Y=y ≪ PY for every y.
(a) If I(X;Y) = ∞ then there is nothing to prove. So we assume I(X;Y) < ∞, which implies PX,Y ≪

PXPY. Recall that PX,Y ≪ PXPY iff PX|Y=y ≪ PX for all PY-a.e. y ∈ X. For any such y, apply Remark

3(a) with µ = PX , and observe that Log
dQX|Y=y/dPX

1 = ln
dQX|Y=y

dPX
, to get

EPX|Y=y
ln

dQX|Y=y

dPX
= D(PX|Y=y∥PX)− D(PX|Y=y∥QX|Y=y),

which is applicable since the first term is finite for a.e. y by the definition of mutual information.
Taking expectation of the previous identity over y, we obtain

EPX,Y ln
dQX|Y

dPX
= I(X;Y)− D(PX|Y∥QX|Y | PY)⩽ I(X;Y).

(b) The equality for I(X;Y) < ∞ follows by taking QX|Y = PX|Y, which satisfies the conditions on Q
when I(X;Y) < ∞.

A.2 Saddle point of mutual information

Definition A.6. Let P ⊆M(X) be a convex set. Suppose there exists P∗
X ∈ P , called a capacity-achieving

input distribution, such that
C ≜ sup

PX∈P
I(PX , PY|X) = I(P∗

X , PY|X).

Then P∗
Y ≜ EX∼P∗

X
PY|X is called a capacity-achieving output distribution.

Theorem A.7 (Saddle point). Let P ⊆M(X) be a convex set. Then for all PX ∈ P and for all QY ∈M(Y),

D(PY|X∥P∗
Y | PX)⩽ D(PY|X∥P∗

Y | P∗
X)⩽ D(PY|X∥QY | P∗

X). (3)

Proof. Right inequality in (3) follows from C = I(P∗
X , PY|X) =minQY D(PY|X∥QY | P∗

X) from Corollary A.4.
The left inequality in (3) is trivial when C = ∞. Hence, we assume that C < ∞ without any loss of gener-
ality. Therefore, we assume I(PX , PY|X)< ∞ for all PX ∈ P . Let λ ∈ (0,1) and define PXλ

≜ λPX + λ̄P∗
X ∈

P and PYλ
= EX∼PXλ

PY|X . Clearly, PYλ
= λPY + λ̄P∗

Y, where PY = EX∼PX PY|X . Consequently, we have
the following chain

C ⩾ I(Xλ;Yλ) = D(PY|X∥PYλ
| PXλ

) = λD(PY|X∥PYλ
| PX) + λ̄D(PY|X∥PYλ

| P∗
X)

⩾ λD(PY|X∥PYλ
| PX) + λ̄C = λD(PX,Y∥PXPYλ

) + λ̄C,

where inequality follows from the second inequality of (3) which is already shown. Thus, subtracting
λ̄C and dividing by λ we get D(PX,Y∥PXPYλ

) ⩽ C and the proof is completed by taking liminfλ→0 and
applying the lower semincontinuity of divergence (Theorem 4.9).

Corollary A.8. In addition to the assumptions of Theorem A.7, suppose C < ∞.
(a) The capacity-achieving output distribution P∗

Y is unique.
(b) Let PX ∈ P and PY = EX∼PX PY|X , then D(PY∥P∗

Y)⩽ C < ∞ and in particular PY ≪ P∗
Y.

Proof. Let C = D(PY|X∥PY | PX) < ∞.
(a) Indeed, from the left inequality in (3) of Theorem A.7, we get

C = D(PY|X∥PY | PX) = D(PY|X∥P∗
Y | PX)−D(PY∥P∗

Y)⩽ D(PY|X∥P∗
Y | P∗

X)−D(PY∥P∗
Y) =C−D(PY∥P∗

Y).

(b) The statement D(PY∥P∗
Y)⩽ C < ∞ follows from the left inequality in (3) and “conditioning increases

divergence” property.

4



A.3 Gaussian channel capacity

Theorem A.9 (Gaussian channel capacity). Consider two independent zero mean Gaussian random variables
Xg ∼N (0,σ2

X) and Ng ∼N (0,σ2
N). Then the following statement are true.

(a) Gaussian capacity. C = I(Xg; Xg + Ng) =
1
2 ln

(
1 + σ2

X
σ2

N

)
.

(b) Gaussian input is the best for Gaussian noise. For all random variables X with variance Var(X) ⩽ σ2
X

independent of Ng, we have I(X; X + Ng)⩽ I(Xg; Xg + Ng) with equality iff FX = FXg .
(c) Gaussian noise is the worst for Gaussian input. For all random variables N such that EXgN = 0 and

EN2 ⩽ σ2
N , we have I(Xg; Xg + N)⩾ I(Xg; Xg + Ng) with equality iff FN = FNg and N independent of Xg.

Proof. WLOG, we assume that all random variables have zero mean. Let Yg ≜ Xg + Ng. Denoting the
relative density of Yg as pYg and the relative conditional density of Yg given Xg = x as pYg |Xg=x, both
with respect to Lebesgue measure, we recall that

ln pYg(y) = −1
2

ln2π(σ2
X + σ2

N)−
y2

2(σ2
X + σ2

N)
, ln pYg |Xg=x(y) = −1

2
ln2πσ2

N − 1
2
(y − x)2

σ2
N

.

We define f (x)≜ D(PYg |Xg=x∥PYg) = D(N (x,σ2
N)∥N (0,σ2

X + σ2
N)) = C + 1

2
(x2−σ2

X)

σ2
X+σ2

N
.

(a) Compute I(Xg; Xg + Ng) = EXg∼PXg
f (Xg) = C.

(b) Recall the inf-representation from Corollary A.4 that implies I(X;Y) = minQ D(PY|X∥QY | PX), i.e.

I(X; X + Ng)⩽ D(PYg |Xg∥PYg | PX) = EX∼PX f (X)⩽ C < ∞.

Furthermore, if I(X; X + Ng) = C, then from the uniqueness of the capacity-achieving output distri-
bution in Corollary A.8, we get PY = PYg . Since Y = X + Ng where Ng is independent of X, we can
write the characteristic function of Y as

e−
1
2 (σ

2
X+σ2

N)t2
= ΨY(t) = ΨX(t)e−

1
2 σ2

N t2
.

It follows that ΨX(t) = e−
1
2 σ2

X t2
, and therefore X ∼N (0,σ2

X).
(c) Let Y = Xg + N and let PY|Xg be the associated kernel such that EXgN = 0 and EN2 ⩽ σ2

N . It follows
that EY2 = EN2 + EX2

g ⩽ σ2
N + σ2

X . Note that here we only assume that N is uncorrelated with Xg,
and not necessarily independent. Since PXg |Xg+Ng ≪ PXg , we get from Theorem A.5

I(Xg;Y)⩾ EPXg ,Y ln
dPXg |Yg(Xg | Y)

dPXg(Xg)
= EPXg ,Y ln

dPYg |Xg(Y | Xg)

dPYg(Y)
= C +

1
2

E
[ Y2

σ2
X + σ2

N
− N2

σ2
N

]
= C +

1
2

σ2
X

σ2
X + σ2

N

(
1 − EN2

σ2
N

)
⩾ C.

From Theorem A.5, the conditions for first equality in above equation requires

D(PXg |Y∥PXg |Yg | PY) = 0.

Thus, PXg |Y = PXg |Yg , i.e., Xg is conditionally Gaussian and PXg |Y=y = N (by, c2) for some constants
b and c. In other words, under PXg ,Y, we have Xg = bY + cZ where Z is a Gaussian random vari-
able independent of Y. This implies that Y must be Gaussian itself by Cramer’s Theorem [106] or
simply by considering characteristic functions, where ΨY(t)ect2

= ec′t2
implies ΨY(t) = ec′′t2

, i.e. Y
is Gaussian. Therefore, (Xg,Y) must be jointly Gaussian and hence N = Y − Xg is Gaussian. Thus
we conclude that it is only possible to attain I(Xg; Xg + N) = C if N is Gaussian of variance σ2

N and
independent of Xg.

Remark 4. This result encodes extremality properties of the normal distribution: for the AWGN channel,
Gaussian input is the most favorable, i.e. attains the maximum mutual information or capacity, while
for a general additive noise channel the least favorable noise is Gaussian.
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