Lecture-25: Mutual information and channel capacity

1 Mutual information

Lemma 1.1. Let P,Q € M(Y) be two measures on space Y, then the map (P,Q) — D(P||Q) is convex.

Proof. Consider state space X = {0,1}, Bernoulli random variable X : Q — X with distribution Px =
Qx € M(X) having mean A € [0,1]. Let Py, P, Qo, Q1 € M(Y) and define Markov kernels

Pyjx—0 = Po, Pyx-1%= Py, Qyjx=0 = Qo, Qy|x=1= Q1.

The divergence of two joint distributions Px y and Qx y in terms of conditional divergence, is given by
D(Px,y||Qx,y) = D(Pyx[|Qyx | Px) = AD(Py|Qo) + AD(P1[|Q1)-

We get the result from the data processing inequality D(Pxy||Qxy) = D(Py||Qy) for KL divergence
and recalling that Py = Ex.p, Py x. O

Remark 1. The proof shows that for an arbitrary measure of similarity D(P||Q), the convexity of (P,Q) —
D(P||Q) is equivalent to conditioning increases divergence property of D. Convexity can also be under-
stood as mixing decreases divergence.

Definition 1.2. For a random vector (X,Y) : O — X x Y with joint distribution Px y € M(X x Y), the
mutual information is defined as

I(X;Y) = D(Px y|/PxPy).
Lemma 1.3. For a random vector (X,Y) : Q@ — X x Y with joint distribution Px y € M(X x Y), the mutual
information 1(X;Y) = D(Py|x||Py | Px).

Proof. From the definition of mutual information and tower property of conditional expectation, we
write [(X;Y) = Epyp,, In dY‘X Ep, D(Py|x||Py) = D(Pyx||Py | Px). O

Theorem 1.4 (Joint vs marginal mutual information). Consider a random vector (X,Y) : Q3 — (X x Y)™.
(a) If the channel is memoryless, i.e., Py|x =TT Py, x,, then 1(X;Y) < Y34 I(X;;Y;), with equality iff Py =
[T, Py,. Consequently, the (unconstrained) capacity is additive for memoryless channels, i.e.

m
I(X;Y) = I(X;;Y;).
Hlljix ( ) Zmax (Xi;Y:)

i=1 Px;

(b) If the source is memoryless, i.e., Px = [T/, Px,, then I(X;Y) > ¥/" I(X;;Y) with equality iff Px\y =
[TL1 Px,|y-almost surely. Consequently,

m
minI(X;Y) =) minI(X;Y).
Py|x i—1 Prix;
Proof. We utilize the definition of mutual information.
(a) From the definition of mutual information, we write
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We can rearrange the terms and observe that In only depends on Py, to get
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When channel is memoryless, D(Py x| TTiZ; Py, x, | Px) = 0, and we get the result.



(b) Similarly, switching the role of X and Y, we can write
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When source is memoryless, D(Px||TTiZ; Px;) = 0, and we get the result.
O

Remark 2. We observe the following.
(a) For a product channel, the input maximizing the mutual information is a product distribution.
(b) For a product source, the channel minimizing the mutual information is a product channel.

Definition 1.5 (Conditional mutual information). We define conditional mutual information between
random variables X and Y given Z as

I(X;Y | Z) £ D(Pyx y|z | Px|zPy|z | Pz) = Boup, I(X;Y | Z =2),

where the product Py, Py| is a conditional distribution under which X and Y are independent condi-
tioned on Z.

Lemma 1.6 (Chain rule). For random variables X,Y,Z, we have 1(Y,Z;X) = I(X;Y) + [(X;Z | Y).

Proof. By the definition of conditional mutual information and mutual information, we get
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Theorem 1.7 (Data processing inequality). If X — Y — Z is a Markov chain, then 1(X;Z) < I(X;Y) with
equality iff X — Z — Y is also a Markov chain.

Proof. Since X — Y — Z is a Markov chain, random variables X and Z are conditionally independent
given Y, and hence I(X;Z | Y) = 0. Applying Kolmogorov identity to I(Y, Z; X), we get

(Y, Z;X)=1(XY)+ (X2 |Y)=1(X;2) + [(X;Y | 2).

The result follows from the observation that I(X;Z | Y) =0 and I(X;Y | Z) > 0 with equality iff X —
Z — Y is also a Markov chain. O

Lemma 1.8. For a random vector (X,Y) : Q@ — X x Y with joint distribution Px y € M(X x Y),
(a) the mutual information I(X;Y) is convex in Py|x for a fixed Px.
(b) the mutual information 1(X;Y) is concave in Px for a fixed Py x.

Proof. Consider random variables X,Yp,Y; and an independent Bernoulli random variable W : () —

{0,1} with mean EW = A € [0,1].

(a) Consider two Markov kernels Py |y, Py, x € M (Y)* and A € [0,1] and define Z £ WY, + WY;. Then,
we observe that Pz x = APy |x + APy, x. Since Ex.p,EPyx = Py, we get Pz = Ex.p,EP7x =
APy, + APy, . Since the map (P,Q) — D(P||Q) is convex, we have

I(Z,X) = D(PZ|XPXHPZPX) < }\D(PYO|XPX||PYOPX) + /\D(PYl\XPX”PYlPX) = }LI(Y(),X) + /\I(Yl,X)

(b) Consider random variables Xy, X; such that X = WX, + WXj, and hence Px = 7\PX0 + AP, . Then
W — X — Y is a Markov chain and I(W;Y | X) = 0. Therefore, by chain rule of mutual information
and the fact that mutual information is non negative, we get

ICGY) =1(Y;X) + I(Y;W | X) = I(X,W;Y) = I(W;Y) + I(X;Y | W) > 1(X;Y | W).

Since I(X;Y | W) = AI(Xg;Y) + AI(Xy;Y), we get the result.



A Channel capacity

Definition A.1. Define a bivariate function Logy : R4 x Ry — R U {£o0} by

a a
Logy = —o0lfa—gp>0) + ®L{a>0p=0} + 0L{a=op=0} + 1n51{a>0,b>o}-

Remark 3. Let P,Q,R < p and fp, fo, fr denote their densities relative to .
(a) lEpLogf—R exists and D(P||Q) — D(P||R) = ]EpLogf—R if at least one of the divergences is finite.

fo fa
(b) E pLog% is well-defined but possibly infinite, and D(P||Q) = E pLogj%. In particular, when P < Q

we have D(P||Q) = Epln g—g.

A.1 Geometric interpretation of channel capacity

Mutual information (MI) can be understood as a weighted “distance” from the conditional distributions
to the marginal distribution. Indeed, for a discrete random variable X : O — X, we have

[(X;Y) = D(Pyx||Py | Px) = X;,CD(PHX:x”PY)PX(x)'

Furthermore, it turns out that Py, similar to the center of gravity, minimizes this weighted distance
and thus can be thought as the best approximation for the “center” of the collection of distributions
{PY‘ X—y X € DC} with weights given by Px. We formalize these results in this section and start with the
proof of a “golden formula”.

Exercise A.2. Show that conditioning increases divergence. That is, consider an input X and
output Y under two different channels Py |y, Qy|x that lead to output distributions Py, Qy respec-
tively. Then, show that D(Py[|Qy) < D(Py|x||Qy x | Px) with equality iff D(Px|y [[Qxy | Py) =0.

Theorem A.3 (Golden formula). For any Qy we have
D(Pyx[|Qy | Px) = I(X;Y) + D(Py||Qy)- ey

Thus, if D(Py||Qy) < oo, then I(X;Y) = D(Py|x[|Qy | Px) — D(Py||Qy).

Proof. In the discrete case and ignoring the possibility of dividing by zero, the argument is really simple.
We observe that
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I(X;Y) =Epy,In —Ep, In
The argument below is a rigorous implementation of this idea.

From the fact that conditioning increases divergence, we have D(Py|x[|Qy | Px) = D(Py|[Qy) and
thus if D(Py||Qy) = co then both sides of (I) are infinite. Thus, we assume D(Py||Qy) < oo and in
particular Py < Qy. Hence, we can define A(y) = %(y) for each y € Y. Rewriting LHS of (I) via the
chain rule of divergence, we see that Theorem amounts to proving

|PxQy) = D(Px,y||PxPy) + D(Py||Qy).

The case of D(Px y||PxQy) = D(Px y||PxPy) = oo is clear. Thus, we can assume at least one of these
divergences is finite. Since Py < Qy, we have PxPy < PxQy, and hence we can assume Pxy < PxQy
without loss of any generality. Since A(Y) > 0, Py-a.s., applying the definition of Log in Definition
we write

D(Pxy

A(Y)

Ep, InA(Y) = Ep,, Log 7

@

Notice that the same A(y) is also the density le;fgi (x,y) of the product measure PxPy with respect

PxQy. Therefore, the RHS of ) by RemarkB|(a) applied with s = PxQy coincides with D(Px y||PxQy) —
D(Px y||PxPy), while the LHS of @) by Remark equals D(Py||Qy). Thus, we have shown the re-
quired D(Py||Qy) = D(Px,y[[PxQy) — D(Px,y||PxPy). O




Corollary A.4 (Mutual information as center of gravity). For any Qy we have I(X;Y) < D(Py x| Qy |
Px). Consequently I(X;Y) = ming, D(Pyx||Qy | Px). If I(X;Y) < oo, the unique minimizer is Qy = Py .

Theorem A.5. Let A = {QX‘Y : Qxjy=y < Px for Py — a.e. y}.

dQx|y
Py

(a) For any Markov kernel Qx|y € A, we have I(X;Y) > Ep, , In

() If [(X;Y) < oo, then 1(X;Y) = supq, 4 Epy, In Baar

Proof. Since modifying Qx|y—, on a negligible set of y’s does not change the expectations, we will

assume that Qx|y_, < Py for every y.

(a) If I(X;Y) = oo then there is nothing to prove. So we assume I(X;Y) < co, which implies Px y <
PxPy. Recall that Px y < PxPy iff PX|Y:y < Px for all Py-a.e. y € X. For any such y, apply Remark

d _,/dP d _
with u = Px, and observe that Log QX‘Y? 'K —1n Qd);l;iy , to get
AQx|y=y _

Epyy_, an = D(Px|y—ylIPx) — D(Px|y—y|Qxjy=y),

which is applicable since the first term is finite for a.e. y by the definition of mutual information.
Taking expectation of the previous identity over y, we obtain
dQxy
Ep,, In dPX‘ =I(X;Y) — D(Pxjy[|Qx|y | Py) < I(X;Y).
(b) The equality for I(X;Y) < oo follows by taking Qx|y = Px|y, which satisfies the conditions on Q
when I(X;Y) < co.

O

A.2 Saddle point of mutual information

Definition A.6. Let P C M (X) be a convex set. Suppose there exists Py € P, called a capacity-achieving
input distribution, such that

C 2 sup I(Px,Pyx) = I(P%, Py|x)-
PxeP

Then P} £ Ex.. p; Py|x is called a capacity-achieving output distribution.
Theorem A.7 (Saddle point). Let P C M (X) be a convex set. Then for all Px € P and for all Qy € M(Y),
D(Py|x|[Py | Px) < D(Py|x|| Py | Px) < D(Py|x[[Qy | Px)- ®)

Proof. Rightinequality in (3) follows from C = I(Pg, Py|x) = ming, D(Py x| Qy | Px) from Corollary
The left inequality in (3) is trivial when C = co. Hence, we assume that C < co without any loss of gener-
ality. Therefore, we assume I(Px, Py|x) < co for all Px € P. Let A € (0,1) and define Px, £ \Px + AP} €
P and Py, = Ex~ Px, Py|x. Clearly, Py, = APy + APy, where Py = Ex..p, Py|x. Consequently, we have
the following chain

C > I(Xp;Ya) = D(Pyx||Py, | Px,) = AD(Py x| Py, | Px) + AD(Py|x||Py, | PX)
> AD(PY|X||PY,\ ‘ Px) +AC= /\D(PX,yHP)(PYA) + AC,

where inequality follows from the second inequality of (3) which is already shown. Thus, subtracting
AC and dividing by A we get D(Px y||PxPy,) < C and the proof is completed by taking liminf,_,; and
applying the lower semincontinuity of divergence (Theorem 4.9). O

Corollary A.8. In addition to the assumptions of Theorem[A.7} suppose C < oo.
(a) The capacity-achieving output distribution Py is unique.
(b) Let Px € P and Py = Ex..p, Py|x, then D(Py|[Py) < C < o0 and in particular Py < Py.

Proof. Let C = D(Py|x||Py | Px) < 0.
(a) Indeed, from the left inequality in (B) of Theorem[A.7] we get

C=D(Py|x[|Py [ Px) = D(Py|x|Py | Px) — D(Py[|Py) < D(Py)x|| Py | Px) — D(Py|[Py) = C — D(Py||Py).

(b) The statement D(Py||Py) < C < oo follows from the left inequality in (3) and “conditioning increases
divergence” property.
O



A.3 Gaussian channel capacity

Theorem A.9 (Gaussian channel capacity). Consider two independent zero mean Gaussian random variables
Xg ~ N (0,0%) and Ng ~ N(0,0%). Then the following statement are true.

2
(a) Gaussian capacity. C = [(Xg; Xo + Ng) = %In (1 + :%)
N
(b) Gaussian input is the best for Gaussian noise. For all random variables X with variance Var(X) < 0%
independent of Ng, we have I(X; X + Ng) < I(Xg; Xg + Ng) with equality iff Fx = Fx,.
(c) Gaussian noise is the worst for Gaussian input. For all random variables N such that EXN = 0 and
EN? < 0%, we have 1(Xg; Xg + N) = I(Xg; Xg + Ng) with equality iff Fy = Fy, and N independent of X,.

Proof. WLOG, we assume that all random variables have zero mean. Let Yy £ Xg + Ng. Denoting the
relative density of Yg as py, and the relative conditional density of Y; given Xg = x as Py, |Xg=xs both
with respect to Lebesgue measure, we recall that

2 2
Yy 1 o 1(y—x)

_r _(y) = —=In2mod — =YX
2(0% +03,)’ NPy fx=x(y) = —5In2moN = 50

1
Inpy,(y) = =5 In27(o% +o}) -
IN

_ 2
We define f(x) £ D(Py,|x,—[|Py,) = DN (x,0%) [N (0,0% +0%,)) = c+%<x 7%,
(a) Compute I(Xg,Xg + Ng) = ]EXgNPng(Xg) —C.
(b) Recall the inf-representation from Corollarythat implies I(X;Y) = ming D(Py|x[|Qy | Px), i.e

I(X:X + Ng) < D(Py x| Py, | Px) = Exp f(X) < C < .

Furthermore, if I(X; X + Ng) = C, then from the uniqueness of the capacity-achieving output distri-
bution in Corollary |A.8 we get Py = Py,. Since Y = X + N, where N is independent of X, we can
write the characteristic function of Y as

e 2 XTI Z W (1) = Py (t)e 20

It follows that ¥x(t) = e~ 29" and therefore X ~ N(0,0%).
(c) LetY = X + N and let Py, Xq be the associated kernel such that EX¢N = 0 and EN? < (712\] It follows

that EY? = EN? 4+ EX2 < 0%, + 0%. Note that here we only assume that N is uncorrelated with X,
and not necessarily magependent Since Py |x N, < Px,, we get from Theorem -

1XY) 3 Ep nexleEel V) p o P (Y X 1 [L_E]
8707 T dPy (Xy) Xg Y dPy (Y) 27l + o4 o
1 o2 EN?
=C+rm X (1-=5)>C
20% +0%, N

From Theorem[A 5] the conditions for first equality in above equation requires
D(Px, |y ||Px,y, | Py) =0.

Thus, Px |y = Px,|y,, i-e, Xg is conditionally Gaussian and Py Y=y = N (by,c?) for some constants
b and c. In other words, under PX v, we have X¢ = bY +cZ Where Z is a Gaussian random vari-
able independent of Y. This 1mphes that Y must be Gaussian itself by Cramer’s Theorem [106] or

simply by considering characteristic functions, where ¥y (t)e et = ¢° 1mphes Yy(t) =", ie. Y

is Gaussian. Therefore, (Xg,Y) must be jointly Gaussian and hence N =Y — X, is Gauss1an. Thus
we conclude that it is only possible to attain I(Xg; Xy + N) = C if N is Gaussian of variance 0% and
independent of Xj.

O

Remark 4. This result encodes extremality properties of the normal distribution: for the AWGN channel,
Gaussian input is the most favorable, i.e. attains the maximum mutual information or capacity, while
for a general additive noise channel the least favorable noise is Gaussian.
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