Lecture-26: Mutual Information Method

1 Rate-distortion theory

Definition 1.1 (Rate distortion). Consider parameter space ©, prediction space @', and loss function
£:0 x © — R. We define the rate distortion function ¢ : R — R for each D € R as

¢e(D)=  inf  1(6;0). 1)
Ps

310 EL(0.0)<D
Theorem 1.2 (General converse). Suppose X — W — X, where W € [M] and E{(X,X) < D. Then InM >
¢x(D).

Proof. For a feasible solution Py y, we get InM > H(W) > I(X;W) > I(X;X) = ¢x(D). O

Definition 1.3. We define maximum distortion as Dmax = infs By ! (9,@) over all pre-determined esti-
mators § without any observation X.

Remark 1. By definition, Dmay is the distortion attainable without any information. Indeed, if Dmax =
E¢ (9,@) for some fixed 6, then this 0 is the “default” reconstruction of 6, i.e., the best estimate when we
have no information about 6. Therefore D > Dpax can be achieved for free. This is the reason for the
notation Dpax despite that it is defined as an infimum.

Theorem 1.4 (Properties). The following properties are true for rate distortion function ¢g : R — R.
(a) The map ¢g is convex and non-increasing.
(b) ¢g(D) =0 forall D > Dmax.

Proof. Let ¢g be rate distortion function as defined in (I) for Markov chain § — X — 8. For a prior
A dPy
7 € M(©), we have 1(6;0) = D(Fy [P | ) = Eg~rEp,, In W"f
(a) Since infimum is a non-increasing function of the set size, we obtain that ¢y is non-increasing in
D. Next, we define A(D) £ {0:E{(6;0) < D}. Let Dy, Dy < Dpay, estimators (81,8,) € A(D;) x
A(D;), and an independent uniform random variable W : Q) — [0, 1] with mean A € [0,1]. We define

another estimator § = W0, + W85, and observe that § € A(AD; + ADj), i.e.

E4(6;8) = AIEL(6;6,) + AEL(0,0,) < AD; + AD;.
Further, it follows from the convexity of mutual information in channel Pyjg for a fixed prior 77 €
M(©), that 1(6;8) < AI(6;6;) + AI(6;0,). Summarizing both results, we observe that

)_\4)9(1)1) + /\(Pg(Dz) = inf 7\[(9;@1) + /\I(G,‘éz) = _il’lf I(@,‘é) = 4)9(7\D1 + )\DQ).
(Ql,ez)eA(Dl)X.A(Dz) HGA()\D]Jr/\Dz)

(b) For any D > Dpax we can set 6 without any information about 6. Thus [ (9;@) =0.
O

Theorem 1.5 (Single-letterization). For stationary memoryless source S : () — 8™ with common distribution
Ps, € M(8) and separable loss ¢ such that £(S,S) = Ly, 0,(S;,S;), then ¢p5(D) = m¢s, (D) for every m.
Thus,

RU(D) £ limsup g5 (D) = g5, (D).

m—o0

Proof. We will show this in two steps. Let Ay (D) £ {$; : E¢4(S;,5;) < D} and A(D) £ {S: E((S,5) < D}.



(a) Consider an estimate S such that P = P?T; where $; € A;(D) for all i € [m]. Then § is a feasible
11°1

estimate with S € A(D). Since S is memoryless and stationary and Pg|g has the product form, the
estimate S is memoryless and stationary. It follows that I(S;S) = Y7, I(S;;S;). Recall that the rate
distortion for m-sized source S is defined as
m m
D)£ inf I(S;$) < inf 1(S;8) < inf I(S;S;) = mgs, (D).

(PS( ) §GA(D) ( ) PSA‘S:PS%"’%:§i€A1(D),i€[m} 1221 ( i z) i:21§1€A1(D) ( i z) ¢S1( )
Diving by m on both sides and taking limit 7 — co, we obtain R(D (D) < ¢s, (D).
(b) For the converse, we focus on any estimator Se A(D), i.e. Markov kernel P§| ¢ satisfies the con-
straint E¢(S,$) < D. From the super-additivity property of mutual information for memoryless
source, we obtain I(S;S5) > Y/" | I(S;;S;). From the definition of rate distortion function, we obtain
¢s,(IE€1(S;;S;)) < I(S;;S;) for each i € [m]. From convexity and non-increasing property of rate
distortion function in Theorem [1.4] we obtain

“ m R m N 1 m n
1(5;8) 2 Y " 1(S;;5;) = Y ¢ps, (B1(S;;5;)) = meps, (% ZlEgl(Si;Si)) > mes, (D).
i=1 i=1 i=1
The result follows from taking infimum over all such Markov kernels Pg s and the definition of rate

distortion function.
O

Theorem 1.6 (Rate distortion for Gaussian sources). Let S ~ N (0,021;) and £(s,8) 2 ||s — §||3 for
3 d ] 3 ; A .8\ _ d 1t do?
s,§ € RY, then rate distortion function R(D) = lnfpgls:IEZ(s,ﬁ)gD I(S;5) =4In™ 5.

Proof. We first show the result for d = 1. Since Dmax = 02, we can assume D < ¢2 for otherwise
there is nothing to show.

(a) Achievability. Choose S = $ + Z, where 5 ~ N (0,0> — D) and independent of Z ~ N/ (0,D).
In other words, the backward channel Py ¢ is AWGN with noise power D. Since S is Gaussian

2

with mean 0 and variance 0, we can write the conditional density for forward channel as

. fs,5(5:9) 1 s? §2 (s =82
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It follows that the forward channel is Pg g = N(Z5Bs, ‘TU}DD), and hence R(D) < I(S;$) =

o2

1o
21D
(b) Converse. Let S ~ N (0,0?) and PSA‘ s be Markov kernel associated with an estimator S. We

denote the joint distribution of source S and estimate S by Pg ¢ or simply by P, such that

E g §)~p£ (S,5) < D. Denote the forward channel in the above achievability by P;f‘ - Then,
we have
1(5,8) = Epln 35 | W — D(Pys||PF e | Pe) +E n 1518
A dPy PR, — VSIS Tsig 1 Es P apy

From the non-negativity of KL divergence and definition of P;f| 5 such that Epl (S,5) < D, we

write ip*
. s 1 | sz (S— §)2 1. o?
1(5;8) > Epl = SIS+ SEp |5 - 20 [ 3 oIS 0.
(8:5) 2 EplnZp==5In 5 +58r| 2 o |z =20
Finally, for the vector case follows from the scalar case and the same single-letterization argument
in Theorem 1.5 using the convexity of the rate-distortion function. O



2 Mutual information method

Definition 2.1. The quantity I(6;X) is the amount of information provided by the data X about the
latent parameter 6. We define the capacity of the channel Py|g by maximizing over all priors, i.e.

1(6;X) < sup I(6;X)=C. 2)

neP(O)
Theorem 2.2 (Mutual information method (MIM)). Consider a simple statistical decision theory setting
with parameter space ©, prediction space ©, estimator 6 represented by a Markov kernel Pé| x X = M(Q),and

loss function £: © x ® — R. If T € M(®) is a prior on the parameter space, then minimax and Bayes risk are
lower bounded as

R* >R = }JnflEé(G,é) > ¢ 1(1(6;X)) = ¢ 1(C). @)

|6

Proof. Fix some prior m € M(®) and we will lower bound the Bayes risk R}, of estimating 6 ~ 7t on
the basis of observation X with respect to loss function £. Consider the Markov chain 6 — X — 4,
where §(X) is a random estimator with Markov kernel Py x such that E [¢(6,8)] < D. Applying the data
processing inequality for mutual information, we have

pp(D) 2  inf  1(6;0) <I1(6;0)<I1(6;X)< sup I(6;X)=C. )
Pyg EL(0,0)<D neEM(®)

Taking D = [E/(6;0) for any estimator 8, we obtain ¢ (IE£(6,0)) < 1(6;8) < 1(6;X) < C. Since the rate-
distortion function ¢y is non-increasing, we obtain that

E((0,0) > ¢~ 1(1(6;0)) > ¢ (1(6;X)) = ¢ (C).

Minimizing the loss IE£(6,8) over all estimation kernels Pyjq, we obtain the lower bound on the Bayes
and hence the minimax risk. O

Remark 2. We observe the following for the above inequality.
(a) The quantity ianng]E 0,0)<p | (6;0) is the minimum amount of information required to achieve a

given estimation accuracy, which is precisely the rate-distortion ¢(D) = ¢g(D).

(b) The reasoning of the mutual information method is reminiscent of the converse proof for joint-
source channel coding. As such, the argument here retains the flavor of “source-channel separa-
tion”, in that the lower bound in @) depends only on the prior (source) and the loss function, while
the capacity upper bound (2) depends only on the statistical model (channel).

We will discuss three popular approaches for, namely, Le Cam’s method, Assouad’s lemma, and Fano's
method. All three follow from the mutual information method, corresponding to different choice of prior
7T € M(6), namely, the uniform distribution over a two-point set {6y,6; }, the hypercube {0,1}?, and a
packing. While these methods are highly useful in determining the minimax rate for many problems,
they are often loose with constant factors compared to the MIM.

2.1 GLM revisited and the Shannon lower bound

Example 2.3 (GLM). Consider the d-dimensional GLM for statistical decision theory simple setting
@ =0 =X £ R?, where we observe an i.i.d. sample X : Q) — X" with common distribution N (6, ;)
and parameter § € . Denote by R*(®) the minimax risk with respect to the quadratic loss ¢ :
(6,0) — ||@ =@ ||§ First, let us consider the unconstrained model where ® £ R
(a) Upper bound. Estimating using the sample mean, ie. § £ X £ Ly™ X, ~ A(0,11;), we
achieve the upper bound R*(IRY) < %. This turns out to be the exact minimax risk, as seen by
computing the Bayes risk for Gaussian priors. Next we apply the mutual information method
to obtain the same matching lower bound without evaluating the Bayes risk.
(b) Lower bound. Again, let us consider 6 ~ N (0,sI;) for some s > 0. We know from the Gaussian
rate-distortion function that
. A A sd
¢(D) = inf , 1(6;9) :EIHEI{DGd}'
pyE[l0-0[2<D



It follows that ¢~ (x) = sde™ 7 forall x € R . Using the sufficiency of sample mean X and the
formula of Gaussian channel capacity, the mutual information between the parameter and the
data can be computed as

1(6;X) = 1(6; %) = g1n(1 1),

It then follows from (@) that R}, > ¢~ (I(6; X)) = 124, which in fact matches the exact Bayes
risk. Sending s — co we recover the result R* (IR%) = %

Remark 3. In the above unconstrained GLM, we are able to compute everything in closed form when ap-
plying the mutual information method. Such exact expressions are rarely available in more complicated
models in which case various bounds on the mutual information will prove useful.

Definition 2.4. Let B(p) = {9 eR?: 6], < p} is the /5-ball of radius p centered at zero.

Theorem 2.5 (Bounded GLM). R*(B(p)) < % A p2.

Proof. We will show that upper and lower bound for the minimax risk when parameter space ® = B(p).

(a) The upper bound R*(B(p)) < % A p? follows from considering the estimator § = X and = 0.

(b) To prove the lower bound, we apply the mutual information method with a uniform prior 8 ~ U
where U : ) — B(r) is a uniform random variable and r € [0,p] is to be optimized. The mutual
information can be upper bounded using the AWGN capacity as

2
[(6:;X)=1(6;X) < sup 1(6;6+iz) = gln (1+ 2~

) < mr
X A 7
e M(O):E||0|3<r vim d

where Z ~ N (0,1;). Alternatively, we can use Corollary [A.1|to bound the capacity (as information
radius) by the KL diameter, which yields the same bound within constant factors,

1 1 1
1(6;X) < sup [(6;6 + —=Z) < max DN (8, =IL;)||N (0, =1)) = 2mr>.
e M(®):E|0|2<r Vi epen() m "

For the lower bound, due to the lack of closed-form formula for the rate-distortion function for
uniform distribution over Euclidean balls, we apply the Shannon lower bound (SLB) from Section
26.1. Since 6 has an isotropic distribution, applying Theorem 26.3 yields

2
inf  1(6;8) > h(0) + dl 2red d e

Py E|J0-3]<D D 2D
for some universal constant ¢, where the last inequality is because for 8 ~ U uniformly distributed
over B(r), h(0) = Invol(B(r)) = dInr + Invol(B(1)) and the volume of a unit Euclidean ball in d
dimensions satisfies (recall (27.14)) VOl(B(l))% = ﬁ Finally, applying (3) yields %ln%f < ’”T’z, ie.,

mr
R* > cr?e” @ . Optimizing over r and using the fact that SUpy (o) Xe " = %1{01} +e a1y,
we have . g
R* > sup cr?e™ T = — Ap>.
re[0,0] m

O

Remark 4. Comparing the bounded GLM with unconstrained GLM case, we see that if p*> > %, it is rate-

optimal to ignore the bounded-norm constraint. If p? < %, we can discard all observations and estimate
by zero, because data do not provide a better resolution than the prior information.

A Capacity as information radius

Definition A.1. For state spaces X and Y and conditional distribution Py x_, € M (Y), and a KL diver-
gence ball with center Py|x_,, we define the radius r and the diameter d as

V—meUPD(PY|X Q). d= sup D(Pyjx_||Pyjx—yx)
Q xex x,x'eX



Corollary A.2 (Radius less than diameter). Let {PY‘ xex EMY):x € DC} be a set of distributions. Then

C =supI(X;Y) <infsup D(Py|x—,[|Q) < sup D(Py|x—y|Py|x=x)-
Py Q xeXx x,x'eX

Proof. By the golden formula Corollary 4.2, we have

I(X;Y) =inf D(Py|x[|Q | Px) < infsup D(Py|x—,[|Q) < inf sup D(Py|x—x||Py)x=y)-
Q Q xex ¥EX xed
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